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SUMMARY 

 

In this article, we propose a methodology to represent the operational procedures of the Brazilian power 

system focused on the security of the electric energy supply. The approach takes into account the 

fundamental difference between conservation laws (physical limits) and operational rules. The former 

are hard constraints while the latter are soft constraints that must be imposed if feasible, but if not, a 

weaker alternative must be considered. For instance, hydraulic balance equations are hard constraints 

while minimum storage targets are soft constraints. A standard approach to deal with operational 

constraints in the power system planning resorts to artificial penalties. However, this approach often 

leads to decisions that are not always the aimed ones and also misrepresent the economical interpretation 

of total and marginal costs. The proposed methodology, using disjunctive programming, describes the 

feasible region of operation as a union of polyhedral sets. It does not make use of artificial prices and 

represents soft constraints more accurately than traditional penalty schemes. Under special 

circumstances, the polyhedra are ordered by cost, and thus exactly describe the ordering of the 

operational rules. The resulting formulation includes binary variables, and recent algorithmic advances 

in multistage mixed integer stochastic programming (SDDiP, proposed by Zou, Ahmed and Sun in 

2016) make the solution of the model computationally tractable. We illustrate the consistency of this 

proposal with a case study considering a long-term operational planning problem of the Brazilian 

Interconnected Power System.  
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1 Introduction 

Physical constraints are generally given by bounds on the physical quantities, and conservation laws for 

mass, energy, and moment. We use equality and inequality constraints involving the corresponding 

quantities to model these laws and bounds, since they are inviolable relations and must be respected for 

any decision and initial state of the physical system. In many cases, such constraints can be modeled by 

linear equations, which induce convex feasible sets. 

 

Operational constraints, on the other hand, follow rules that may be accommodated depending on the 

state of the system. One example of such rule has to do with operational security concerns related to low 

storage volumes of the reservoirs of a hydrothermal power system. One way to represent these concerns 

is to avoid low stored volumes, which can be attained by establishing a minimum energy storage level 

(𝑣MinOp) for the equivalent reservoir of the hydro system that, whenever the stored energy level falls 

below 𝑣MinOp, imposes compulsory thermal generation. 

 

Another example is given by Resolution 2081 issued by the National Water Agency (ANA) on 

December 4, 2017 [1], regarding the conditions for the operation of the São Francisco River Water 

System. This resolution establishes the operational rules for the outflow of the reservoirs of the system 

according to the storage level of Três Marias and Sobradinho reservoirs. 

 

These and other operational rules can be set in the framework of “if-then” constraints that must be 

enabled or disabled as required. It is natural to use binary variables to model this “on-off” behavior, 

which can induce non-convex feasible sets. Yet, it may not be easy to obtain a description of such sets 

by trial and error. We propose the use of the Disjunctive Constraints technique [2, 3, and 4] that provides 

a general method of describing “if-then” rules in terms of union of polyhedra and are represented by 0-1 

mixed integer linear constraints. 

 

In sections 2 and 3 we present a general methodology to deal with this kind of constraints. In section 4 

an example regarding security levels for the Brazilian Power System is presented and discussed. 

2 Examples of operational constraints 

In this section, we present two operational rules 𝑣MinOp and ANA, and examine the process of 

transforming them into mathematical constraints to be incorporated in an optimization model. We follow 

the point of view of using “binary if-then rules”. 

2.1 Minimum Operational Volume 

The Minimum Operational Volume (𝑣MinOp) is a stored energy reference that is used as a signal of 

imminent risk of energy supply for the Brazilian Power System. Indeed, if the stored energy of any 

subsystem falls below the settled 𝑣MinOp, then it is agreed that a minimum amount of thermal generation 

must be compulsorily dispatched.  

 

At a given time t, we denote by 𝑣MinOp,𝑡 the vector corresponding to the minimum security energy level 

of each subsystem, by 𝑣𝑡+1 the vector of stored energy at the end of time t (beginning of time t+1), by 

𝑔𝑡 the generation of each thermal plant during stage t, and by 𝐺𝑡 the vector of security thermal dispatch 

of each thermal plant. We omit the subscript t of 𝑣MinOp and 𝐺 in the following text so as to not overload 

the notation. The constraints corresponding to the binary 𝑣MinOp rules are: 
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𝑣𝑡+1 ≥ (1 − 𝑧𝑔)𝑣MinOp
𝑔𝑡 ≥ 𝑧𝑔𝐺

𝑧𝑔 ∈ {0, 1}

      (1) 

where 𝑧𝑔 is a binary variable that indicates whether or not the final stored energy 𝑣𝑡+1 is below the 

security level 𝑣MinOp. If 𝑧𝑔 equals 1, the thermal generation lower bound is raised to a level 𝐺, whether 

if 𝑧𝑔 equals 0, there is no constraint on minimum compulsory thermal generation. The resulting feasible 

set for the variables (𝑣𝑡+1, 𝑔𝑡) is depicted in Figure 1. 

 

 
FIGURE 1: Binary 𝑣MinOp. 

 

Note that, if we used one binary variable for each subsystem, we would have the slightly different rule 

that, if the stored energy of a subsystem falls below the corresponding target, just a group of thermal 

plants is dispatched, instead of all of them. 

2.2 Minimum Outflow 

The rule regarding the minimum reservoir outflow is more involved. The objective of this rule is to 

ensure a minimum reservoir outflow to meet the multiple uses of water. However, in shortage situations, 

the National Water Agency (ANA) [1] determines smaller outflow values to guarantee the continuity of 

water supply for essential activities. Figure 2 illustrates the feasible set corresponding to the ANA rules, 

translated into equivalent energy for the optimization model. 

 

 
FIGURE 2: Minimum outflow operational rule. 

 

The minimum energy outflow in normal circumstances is 𝑞1. 𝑞2 is a smaller outflow value for shortage 

situations, and 𝑣crit is the critical energy storage below which we consider an outflow of 𝑞2, instead of 

𝑞1. Note that for stored values 𝑣𝑡 above 𝑣crit, the parameter 𝑞1 is just a lower bound for the outflow 𝑞𝑡, 
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but for stored values between 𝑞2 and 𝑣crit the corresponding outflow is exactly 𝑞2. For stored volumes 

below 𝑞2 the outflow is the remaining stored volume 𝑣𝑡, that is, the decision is to empty the reservoir. 

In this case, it is difficult to find a set of constraints using binary variables that represents the rules 

depicted in Figure 2 by trial and error. Section 3 presents a systematic approach for modeling non-

convex feasible sets using binary variables. 

3 Disjunctive Constraints: a general modeling technique 

Disjunctive Programming (DP) was developed by Balas [2, 3, and 4]. A disjunction is a set of constraints 

of which at least one must be satisfied. In our setting, this corresponds to different elementary feasible 

regions, and we demand that our decision variables belong to at least one of them. 

 

In the linear programming framework, each elementary feasible region consists of a polyhedron, and 

therefore the complete feasible region is a union of polyhedra. While polyhedra are convex, their union 

does not need to be. In this case, it is impossible to represent such sets using only continuous variables 

and linear constraints, since this always result in a convex set. Let {𝑃𝑖}𝑖∈𝐼 be a finite family of polyhedra, 

where 𝑃𝑖 = {𝑥 ∈ ℝ
𝑛 | 𝐴𝑖𝑥 ≤ 𝑏𝑖}, and let P be the corresponding union ⋃ 𝑃𝑖𝑖∈𝐼 . Under certain regularity 

conditions, we can represent P using the following formula: 

 

𝑃 = {𝑥 ∈ ℝ𝑛 | 
𝐴𝑖𝑥𝑖 ≤ 𝑧𝑖𝑏𝑖,   𝑥 = ∑ 𝑥𝑖 , ∑ 𝑧𝑖𝑥∈𝐼 = 1𝑥∈𝐼 ,

𝑥𝑖 ∈ ℝ
𝑛, 𝑧𝑖 ∈ {0,1}, 𝑖 ∈ 𝐼

}   (2) 

 

The idea of formula (2) is to “activate” a given polyhedron 𝑃𝑖 using the corresponding binary variable 

𝑧𝑖. Indeed, (2) creates one binary variable 𝑧𝑖 and one continuous variable 𝑥𝑖 for each polyhedron 𝑃𝑖. It 
ensures that exactly one binary variable is equal to one using the sum-to-one constraint, ∑ 𝑧𝑖 = 1𝑖∈𝐼 , and 

the constraints for 𝑥𝑖 are those from the polyhedron 𝑃𝑖, but with right-hand side 𝑏𝑖 multiplied by 𝑧𝑖. If 
the binary variable 𝑧𝑖 is equal to one, then 𝑥𝑖 belongs to the polyhedron 𝑃𝑖, otherwise the vector 𝑥𝑖 
satisfies 𝐴𝑖𝑥𝑖 ≤ 0. 

 

If all polyhedra are bounded, then the only solution to 𝐴𝑖𝑥𝑖 ≤ 0 is the null vector. Since there is only 

one j such that 𝑧𝑗 = 1, the constraint 𝑥 = ∑ 𝑥𝑖𝑖∈𝐼  simplifies to 𝑥 = 𝑥𝑗, since all other 𝑧𝑖 must be zero, 

which imply that 𝑥𝑖 are equal to the null vector. Therefore, 𝑧𝑗 effectively “activated” polyhedron 𝑃𝑗, and 

all other were “deactivated”. 

 

Now, if some of the 𝑃𝑖 are unbounded, there are further solutions to 𝐴𝑖𝑥𝑖 ≤ 0, which are known as 

recession directions of 𝑃𝑖, [5]. Geometrically, such directions are rays such that starting at any point 𝑥𝑖 
in 𝑃𝑖 and going indefinitely along 𝑥𝑖 we never leave the set 𝑃𝑖: 

𝑥𝑖 +  𝛼𝑥𝑖 ∈ 𝑃𝑖,   for every   𝛼 ≥ 0. 

 

We illustrate the use of this formula with the previously presented non-convex operational constraints. 

3.1 Binary Minimum Operational Volume 

Another possible way of describing the 𝑣MinOp rule is by union of polyhedra. Note that Figure 1 is the 

union of the following sets: 

𝑃1 = {(𝑣𝑡+1, 𝑔𝑡) | 0 ≤ 𝑣𝑡+1 ≤ 𝑣MinOp, 𝐺 ≤ 𝑔𝑡 ≤ 𝑔} 

𝑃2 = {(𝑣𝑡+1, 𝑔𝑡) | 𝑣MinOp ≤ 𝑣𝑡+1 ≤ 𝑣, 0 ≤ 𝑔𝑡 ≤ 𝑔} 

 

Since 𝑃1 and 𝑃2 are bounded, we can apply the disjunctive constraint formula (2) to describe the desired 

feasible set using binary variables: 
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𝑃 =

{
 
 

 
 

(𝑣𝑡+1, 𝑔𝑡) |
|

𝑣𝑡+1 = 𝑣𝑡+1
1 + 𝑣𝑡+1

2  ,        𝑧1 + 𝑧2 = 1

𝑔𝑡 = 𝑔𝑡
1 + 𝑔𝑡

2 ,           𝑧1, 𝑧2 ∈ {0, 1}

 0 ≤ 𝑣𝑡+1
1 ≤ 𝑧1𝑣MinOp ,     𝑣MinOp ≤ 𝑣𝑡+1

2 ≤ 𝑧2𝑣

𝑧1𝐺 ≤ 𝑔𝑡
1 ≤ 𝑧1𝑔 ,               0 ≤ 𝑔𝑡

2    ≤ 𝑧2𝑔

 

}
 
 

 
 

 

 

So, if 𝑧1 is equal to 1, then (𝑣𝑡+1
1 , 𝑔𝑡

1) belongs to 𝑃1, 𝑧2 equals 0, and (𝑣𝑡+1
2 , 𝑔𝑡

2) is equal to (0, 0). 

Analogously, if 𝑧2 is equal to 1. 

3.2 Binary Minimum Outflow 

Let’s use the general approach to represent the binary minimum operational feasible set. As can be seen 

in Figure 2, the union of the following polyhedra describes this set: 

𝑃1 = {(𝑞𝑡, 𝑣𝑡) | 𝑣crit ≤ 𝑣𝑡 ≤ 𝑣 , 𝑞1 ≤ 𝑞𝑡 ≤ 𝑞}, 

𝑃2 = {(𝑞𝑡, 𝑣𝑡) | 𝑞2 ≤ 𝑣𝑡 ≤ 𝑣crit ,                𝑞𝑡 ≤ 𝑞2} , 

𝑃3 = {(𝑞𝑡 , 𝑣𝑡)  | 0 ≤ 𝑣𝑡 ≤ 𝑞2 ,            𝑞2 − 𝑣𝑡 = 0} . 

 

Again, all polyhedra are bounded, so the disjunctive constraint theory guarantees that formula 2 

describes exactly the union 𝑃 = 𝑃1 ∪ 𝑃2 ∪ 𝑃3: 

𝑃 =

{
 
 

 
 

(𝑞𝑡, 𝑣𝑡) |
|

𝑞𝑡 = 𝑞𝑡
1 + 𝑞𝑡

2 + 𝑞𝑡
3 ,        𝑧1 + 𝑧2 + 𝑧3 = 1

𝑣𝑡 = 𝑣𝑡
1 + 𝑣𝑡

2 + 𝑣𝑡
3 ,           𝑧𝑖 ∈ {0, 1}, 𝑖 = 1, 2, 3,

 𝑧1𝑣crit ≤ 𝑣𝑡
1 ≤ 𝑧1𝑣 , 𝑧2𝑞2 ≤ 𝑣𝑡

2 ≤ 𝑧2𝑣crit ,       0 ≤ 𝑣𝑡
3 ≤ 𝑧3𝑞2 ,

𝑧1𝑞1 ≤ 𝑞𝑡
1 ≤ 𝑧1𝑞 ,         𝑞𝑡

2 = 𝑧2𝑞2 ,                𝑞𝑡
3 − 𝑣𝑡

3 = 0

 

}
 
 

 
 

 

 

It is instructive to note that the relative dimension of 𝑃1 is two, while the relative dimension of 𝑃2 and 

𝑃3 is one. So, the disjunctive constraint theory works for a wide variety of polyhedra. 

3.3 Non-representable feasible sets 

Despite the flexibility, it is not always possible to model union of polyhedra using the theory of 

disjunctive constraints if one of the polyhedra is unbounded. In Figure 3(a) below we show an example. 

Note that 𝑃1 is bounded, but 𝑃2 is not, and the direction of recession of 𝑃2 are the rightward directions. 

If 𝑧1 equals one, then 𝑥1 belongs to 𝑃1, 𝑧2 equals 0, and 𝑥2 is a direction of recession of 𝑃2, that is, 

𝐴2𝑥2 ≤ 0. Since the disjunctive constraint formula (2) is defined for the sum 𝑥 =  𝑥1 + 𝑥2, we obtain a 

larger set Q illustrated in Figure 3(b). 

 

Jeroslow [6] proved that if the formula of disjunctive constraints does not represent a given union of 

polyhedra then no set of linear constraints involving continuous and binary variables is able to represent 

it. This is an important theorem, since it presents the limits of using binary variables to model union of 

polyhedra. A sufficient condition for formula (2) to work properly is that all polyhedra 𝑃𝑖 have the same 

set of recession directions. An elementary proof of the Jeroslow theorem and other results of the 

disjunctive contraints approach can be found in [7]. 
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(a) Non-representable feasible set 

 
(b) Certificate of non-representability 

FIGURE 3: Union of polyhedral non-representable by binary variables and linear constraints 

4 Case study: hydrothermal operational planning with disjunctive 

constraints 

In this section, we evaluate the Disjunctive Constraint approach applied to a long-term hydropower 

system operational planning problem based on the Brazilian Interconnected Power System as of January 

2015. The system configuration comprises four interconnected subsystems and the planning period goes 

from January 2015 to December 2019 considering 60 monthly stages. The minimum operational volume 

(𝑣MinOp) corresponds to 20% of the maximum storable energy for all months of the planning period. In 

order to emphasize the effects of the methodologies, we increased the demand by a factor of 5%. 

 

The base case that will be used to evaluate the Binary 𝑣MinOp approach is a continuous stochastic 

optimization problem: 

𝑄𝑡(𝑣𝑡, 𝒂𝑡) = min 𝑐
T𝑔𝑡 + 𝑐𝑑𝑓

T 𝑑𝑓𝑡 + 𝛽𝒬𝑡+1(𝑣𝑡+1) 

s.t. (∗)𝑃 

 

𝒬𝑡+1(𝑣𝑡+1) = {
𝜌𝑡[𝑄𝑡+1(𝑣𝑡+1, 𝑎𝑡+1)], 𝑡 ∈ {1,… , 𝑇 − 1}

0,                        𝑡 = 𝑇
 

where 𝑣𝑡+1 is the stored energy at the beginning of stage t+1, 𝑔𝑡 is the thermal generation during stage t 

with unit cost 𝑐T, 𝑑𝑓𝑡 is the deficit (load shedding) during stage t and 𝑐𝑑𝑓
T  is the corresponding unit cost. 

The inflow during stage t, 𝒂𝑡, is a stagewise independent stochastic process and (∗)𝑃 are the physical 

constraints and other variables. The function 𝒬𝑡+1(𝑣𝑡+1) is the future cost-to-go function, which is an 

estimator for the future thermal generation and deficit costs of the next stage onward if the storage 

energy at the end of stage t is 𝑣𝑡+1. Such estimator depends on a risk measure 𝜌𝑡 considered in this case 

as a convex combination between the expectation and the CVaR: 𝜌𝑡[𝑍] = (1 − 𝜆)𝔼[𝑍] + 𝜆CVaRα[𝑍], 
[8]. We performed all numerical experiments using  = 0.10 e  = 0.05. Therefore, the objective function 

minimizes the current cost plus this mean-CVaR estimation of the future cost at each stage. We refer 

this case as Base in the sequel. A more detailed description of these problems can be found in [7]. 

 

A usual approach to implement the 𝑣MinOp rule is by introducing a penalization in the objective function. 

We consider a pre-established unit cost 𝜃𝑡
T incurred whenever the stored energy 𝑣𝑡+1 lies below 𝑣MinOp: 

𝑄𝑡(𝑣𝑡, 𝒂𝑡) = min
𝑥𝑡 ∈ 𝒳𝑡

𝑐T𝑔𝑡 + 𝑐𝑑𝑓
T 𝑑𝑓𝑡 + 𝛽𝒬𝑡+1(𝑣𝑡+1) + 𝜃𝑡

T(𝑣MinOp − 𝑣𝑡+1)+   (3) 

   s.t. (∗)𝑃, 

where (𝑎)+ denotes the positive part of number a, i.e., (𝑎)+ = max (0; 𝑎). We call this problem the 

Penalty approach. For this study, we consider a penalty value 𝜃𝑡 between the most expensive thermal 

cost and the cost of the first deficit level so as to ensure all thermal plants units will be dispatched if we 

fall below 𝑣MinOp. In the ensuing text, we refer to this case as Pen. 
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The Binary 𝑣MinOp formulation, on the other hand, uses binary variables to dispatch the security thermal 

units if some coordinate of 𝑣𝑡+1 is below the corresponding security value 𝑣MinOp. We also considered 

a binary constraint to suppress preventive deficit, that is, there is no load curtailment if the stored energy 

is positive. The corresponding Disjunctive Constraint formulation is 

𝑄𝑡(𝑣𝑡, 𝒂𝑡) = min
𝑥𝑡 ∈ 𝒳𝑡

𝑐T𝑔𝑡 + 𝑐𝑑𝑓
T 𝑑𝑓𝑡 + 𝛽𝒬𝑡+1(𝑣𝑡+1) 

s.t. (∗)𝑃, 

𝑧𝑑 , 𝑧𝑔 ∈ {0, 1}
𝑁sys 

(1 − 𝑧𝑔)𝑣MinOp ≤ 𝑣𝑡+1 ≤ (1 − 𝑧𝑑)𝑣, 

𝑀𝐼𝑔𝑡 ≥ 𝑧𝑔𝐺,   0 ≤ 𝑑𝑓𝑡 ≤ 𝑧𝑑𝑑𝑡 

where 𝑁sys is the total of subsystems, 𝑧𝑔 is the binary vector with value 1 whenever the stored energy 

of the corresponding subsystem is below the reference volume and zero if not;  𝑧𝑑 is the binary vector 

with component equal to 1 if the corresponding subsystem stored energy is zero. 𝑣 is the maximum 

stored energy capacity, 𝑑𝑡 is the energy demand for time t, 𝐺 is the vector of security thermal dispatch 

for each subsystem, 𝑀𝐼 is a 0-1 matrix that links each component of 𝑔𝑡 to its subsystem so that 𝑀𝐼𝑔𝑡 is 

the susbsystem thermal generation. Note that the vector product 𝑎 𝑏 is a term-by-term product. This will 

be denoted as DC as a reference to the Disjunctive Constraint methodology 

4.1 Computational results 

The SDDP algorithm, developed for the continuous convex case [9], is the standard method to solve 

large scale multistage stochastic linear problems like the Base and Pen cases. Due to the use of binary 

variables, the DC formulation results in non-convex multistage stochastic mixed integer linear 

optimization problem (MSIP). Recently, these problems became computationally tractable thanks to the 

development of the SDDiP algorithm [10] that extends the original SDDP algorithm to the class of MSIP 

problems. However, the SDDiP algorithm requires that the state variables have bounded magnitude, so 

we had to simplify the scenario generation model to consider stagewise independent historical inflows 

from 1931 to 2015.  

 

The computational implementation is written in Julia [11], using SDDP.jl [12] and SDDiP.jl [13] open 

packages and the optimization solver Gurobi v7.0.2 [14]. In the following experiments, we run the 

algorithm for 1000 iterations with 1 trial solution per iteration and a scenario tree with 85 realizations 

in every stage resulting in a total number of 1 × 85 × …× 85 = 8559 scenarios. The individual stage 

costs and policy value are evaluated using 2000 randomly generated scenarios. 

 

Figure 4 shows the stored energy, deficit, thermal generation and operational costs for each of the 

policies, considering the first 36 months in order to avoid end of horizon effects. For clarity of 

visualization, we present only 200 random scenarios in these graphs. In blue, we highlight the decisions 

of each policy for the same inflow scenario. The first row shows the stored energy values where the red 

dashed line is the minimum operational energy (𝑣MinOp) along the stages. We can see in Figure 4(a) that 

some energy stored values for the Base policy are below 𝑣MinOp. This is expected, since there is no 

provision in the Base (pure CVaR) policy to directly avoid low volumes. The DC policy, Figure 4(b), 

shows small impact on the number of series with stored values below 𝑣MinOp. Note that, in contrast with 

the Base policy, the simulated blue series in the DC case is above 𝑣MinOp in stages 15 and 33 due to the 

additional thermal generation induced by the binary constraints. On the other hand, Pen policy works 

effectively in terms of increasing the stored volume at each stage: most of the simulated series remain 

above 𝑣MinOp Figure 4(c). However, this policy has a side effect on the deficit variable, as we can see in 

the following row. 
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Indeed, both the Base and the DC policies resulted in low values of deficit, as we observe in Table 1. In 

Figures 4(d) and 4(e) we can see that almost none of the 200 series resulted in deficit. However, the Pen 

case, Figure 4(f), produces deficit with high frequency, and for the highlighted series, deficit occurs only 

for the Pen case at stage 21, although there still remains resources to meet the demand. The thermal 

generation policy presents different behavior according to each proposal. In Figure 4(g) we have the 

Base case and when comparing with Figure 4(h) we observe a slight increase in thermal generation in 

general, where we highlight the security thermal dispatch 𝐺 around stages 8 to 12, 18 to 24 and 32 to 35 

induced by the binary constraints. The Pen case of Figure 4(i) produces even more thermal generation 

and the reason is the increase in the future cost induced by the penalty 𝜃𝑡
T(𝑣MinOp − 𝑣𝑡+1)+. In the series 

highlighted in blue we see in Figure 4(g) that thermal generation remains below the maximum capacity 

for all stages in particular also when the storage 𝑣𝑡+1 is below 𝑣MinOp. On the other hand, the case with 

DC, Figure 4(h), thermal generation is at its maximum in all storage occurrences below 𝑣MinOp and in 

Pen case, Figure 4(i), thermal generation is close to the maximum throughout the period. We observe 

that in stage 21 the thermal generation is at the maximum value, which is consistent with the occurrence 

of a preventive deficit at the stage and case. 

 

The operation cost along the stages is the sum of the cost of thermal generation and the deficit. The 

operation cost of the Base case of Figure 4(j) is low, with few occurrences of costs peaks, since for these 

200 simulated series the deficit is very small. In the DC case there is also low occurrence of deficit, so 

the operating cost of Figure 4(k) also presents low occurrence of costs peaks. Additionally, we observe 

cost boosts associated with thermal generation boosts induced by the binary variable. Figure 4(l) of the 

Pen case presents a higher average cost due to higher thermal generation and higher occurrence of high 

costs peaks due to greater occurrence of deficit. Note that in each of the operation cost panels, the blue 

curve accompanies the corresponding movement of the total thermal generation and deficit blue curves. 

 

Although the scenario graph provides a good qualitative idea of the magnitude of interest, it is not an 

effective plot of the probability density of the simulated quantity along the stages. For this purpose, the 

violin plot is more appropriate as it is a boxplot-like graph, but uses a method of density estimation at 

each stage. In order to obtain a more accurate estimation, we evaluated each of the policies in 2,000 

historical inflow scenarios to produce the thermal generation violin plots of Figure 5. These graphs 

comprise only the first 12 stages of simulation. Note that the thermal generation in the Base case shown 

in Figure 5(a) has two points of higher density: the values of 7800 and 9200 MWmonth. The DC case 

of Figure 5(b) has a similar behavior as the Base until stage 8, but from stage 9 to stage 12 we have a 

higher generation in a group of scenarios because of the binary variables. In this case, we also see two 

points of greater density: the value of 7800 and 11000 MWmonth. In the Pen case, Figure 5(c), we 

clearly see the displaced distribution upwards, with many scenarios between 9000 and 11000 

MWmonth. 

 

Finally, we present a quantitative analysis of the deficit for each of the policies evaluated also with 2,000 

historical scenarios. Table 1 shows the total deficit added along the 36 simulation stages and over the 

2,000 simulated series. Note that for the first deficit level, the DC halved the amount of deficit produced 

in the Southeast relative to the Base whereas the Pen case multiplied by 10 the deficit in relation to the 

Base. Figure 5 presents a barplot using the first deficit level for each subsystem and policy to emphasize 

the difference between the magnitudes of deficit. It is worth mentioning that in Table 1 all the levels and 

subsystems of the Pen method results in a deficit amount greater than that of the Base case. All the levels 

and subsystem of the DC method have a lower value than the Base, except the fourth level of the South 

where the opposite occurred. Although the number of deficit occurrence in the fourth level is not 

sufficient for definitive assertions, we have the intuition that the binary constraint that suppress the 

preventive deficit can have a side effect of producing deficits with larger magnitudes when they occur. 
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(a) Base Sto. En. 

 
(b) DC Sto. En. 

 
(c) Pen Sto. En. 

 
(d) Base deficit 

 
(e) DC deficit 

 
(f) Pen deficit 

 
(g) Base Th. Gen. 

 
(h) DC Th. Gen. 

 
(i) Pen Th. Gen. 

 
(j) Base Op. Cost 

 
(k) DC Op. Cost 

 
(l) Pen Op. Cost 

FIGURE 4: Stored energy (Sto. En.), deficit, thermal generation (Th. Gen), operational cost (Op. Cost) 

of pure CVaR (Base), CVaR with disjunctive constraints (DC) and CVaR with penalization (Pen) 

 

 

 
(a) Base 

 
(b) DC 

 
(c) Pen 

FIGURE 5: Violin plot for thermal generation in the 12 first stages (MWmonth) 
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TABLE 1: Deficit – Base, DC and Pen (GWmonth). 

 Base DC Pen 

Deficit Level 1 2 3 4 1 2 3 4 1 2 3 4 

SE 140.5 18.5 9.8 0.0 59.3 15.7 14.4 0.0 1553.6 58.4 0.0 0.0 

S 82.8 12.3 5.4 0.0 26.7 7.1 3.5 2.0 468.4 17.5 0.0 0.0 

NE 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.1 0.0 0.0 0.0 

N 1.3 0.2 0.0 0.0 0.6 0.0 0.0 0.0 7.2 0.0 0.0 0.0 

 

 
FIGURE 6: First level deficit (GWmonth). 

5 Conclusion 
 

In this paper we have presented a general methodology called Disjunctive Constraints for modeling 

“if-then” nonconvex constraints. In particular, this technique provides a simple and algorithmic way to 

describe operational constraints using binary variables. Jeroslow proves that the disjunctive constraint 

technique is the most general framework for modeling non-convex sets by means of linear constraints 

with binary and continuous variables. 

 

We illustrate the use of this modelling technique with the minimum operational volume and the 

minimum operational outflow rules for the Brazilian operational planning models. We also analysed an 

application of this methodology to a large-scale multistage stochastic programming problem, where we 

have compared the resulting policy with the one obtained by the Base model (pure CVaR) and the 

traditional penalty model for the minimum operational volume rule. 

 

Our results have shown that the Disjunctive Constraint approach performs better than the penalty and 

the Base case, since it precisely models the operational rules and does not produce preventive deficit as 

a collateral effect of penalties. The use of binary variables in a large-scale multistage stochastic 

optimization problem was made possible by the SDDiP algorithm.  

 

A future work is to study ways to overcome such modeling limitation imposed by the state variable 

boundness requirement of the SDDiP algorithm. 

 

BIBLIOGRAPHY 

 

[1] National Water Agency - Brazil, Resolution no 2081 of December 4th, 2017. 

http://arquivos.ana.gov.br/resolucoes/2017/2081-2017.pdf. 

[2] E. Balas, “Disjunctive programming”, Annals of Discrete Mathematics, Elsevier, 1979, pp. 

3-51. 

[3] E. Balas, “Disjunctive programming: Properties of the convex hull of feasible points”, Discrete 

Applied Mathematics, December 1998. 



  
 
 
 
 

 
XIV SYMPOSIUM OF SPECIALISTS IN ELECTRIC OPERATIONAL AND EXPANSION PLANNING 

 

 SEPTEMBER 30TH THRU OCTOBER 3RD OF 2018 / RECIFE / PE /BRASIL 

  10 

 

 

[4] E. Balas, “Disjunctive programming”, In 50 Years of Integer Programming 1958-2008 - From 

the Early Years to the State-of-the-Art, Springer, 2010, pp. 283–340. 

[5] D. P. Bertsekas, Convex Optimization Theory, 1st edition, Athena Scientific, 2009. 

[6] R. G. Jeroslow. “Representability in mixed integer programming, I: Characterization results”, 

Discrete Applied Mathematics, June 1987. 

[7] F.G. Cabral, “The role of extreme points for convex hull operations”, MSc dissertation, Applied 

Mathematics, IMUFRJ, 2018. 

[8] A. Shapiro A, W. Tekaya, J.P. Costa, and M.P. Soares, “Risk neutral and risk averse stochastic 

dual dynamic programming method.” Eur. J. Oper. Res., (2013), 224:375–391. 

[9] M. V. Pereira and L. M. Pinto, "Multi-stage stochastic optimization applied to energy planning", 

Mathematical Programming 52, 1991 pp. 359-375. 

[10] J. Zou, S. Ahmed, and A. Sun, "Stochastic dual dynamic integer programming", Optimization 

Online, 2016, http://www.optimization-online.org/DB_FILE/2016/05/5436.pdf. 

[11] J. Bezanson, A. Edelman, S. Karpinski and V.B. Shah, “Julia: A Fresh Approach to Numerical 

Computing.” (2017) SIAM Review, 59: 65–98. doi: 10.1137/141000671. url: 

http://julialang.org/publications/julia-fresh-approach-BEKS.pdf. 

[12] O. Dowson and L. Kapelevich, “SDDP.jl: A Julia package for Stochastic Dual Dynamic 

Programming”, Optimization Online, 2017, http://www.optimization-online.org/DB_HTML/-

2017/12/6388.html 

[13] L. Kapelevich, SDDiP.jl: SDDP extension for integer local or state variables, GitHub, 2018, 

https://github.com/lkapelevich/SDDiP.jl 

[14] Gurobi Optimization Inc., Gurobi optimizer reference manual, 2016, http://www.gurobi.com 

 

ACKNOWLEDGEMENT 

This work was carried out under contract between UFRJ and ONS, which is greatly acknowledged by 

the authors. 

Biographies 
 

Filipe Goulart Cabral (Rio de Janeiro, RJ, Brazil, 1990) has a B.Sc. in Applied 

Mathematics (UFRJ, 2013), M.Sc. in Mechanical Engineering (COPPE/UFRJ, 

2016) and M.Sc. in Applied Mathematics (IM/UFRJ, Brazil, 2018). Since 2015, he 

works for ONS, the Brazilian ISO, where he develops methodologies in operations 

research and statistics applied to power system planning models. 

Bernardo Freitas Paulo da Costa (Rio de Janeiro, RJ, Brazil, 1985) has a B.Sc in Engineering (École 

Polytechnique, France, 2007) and in Applied Mathematics (UFRJ, Brazil, 2009), M.Sc in Mathematics 

(École Polytechnique and Paris-Sud, 2009) and D.Sc in Mathematics (Paris-Sud, 2012). He has spent a 

year at Purdue University (2012-2013) as Visiting Assistant Professor, and since 2013 is Professor at 

UFRJ in the Applied Mathematics department, teaching courses from complex analysis to mathematical 

optimization, in both graduate and undergraduate levels. Since 2017, he started a technical cooperation 

with ONS to develop methodologies for non-convex optimization problems in the Energy sector. 

Bernardo has authored and co-authored papers in complex analysis, optimization and stochastic 

processes.  

Joari Paulo da Costa (Curitiba, PR, Brazil, 1953) has a B.Sc. in Civil Engineering (UFPR, 1976) and 

Mathematics (PUC-PR, 1976), M.Sc. in Civil Engineering (COPPE/UFRJ, 1982) and D.Sc. in Energy 

Planning (COPPE/UFRJ, 2007). Since 2000, he is with ONS, the Brazilian ISO, where he is a project 

manager in the areas of hydrology, optimization and statistical techniques applied to power systems 

planning and operations. From 1980 to 2000 he has been with Cepel, the Brazilian electric power 

research center, where he coordinated the development of methodology and software in the above 

mentioned areas. He has authored and co-authored about forty technical papers in refereed journals and 

conference proceedings. 

http://dx.doi.org/10.1137/141000671
http://www.gurobi.com/

