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1 Introduction

The Electric System National Operator (ONS) of Brazil is a private non-profitable entity created
on 26 August 1998. It is responsible for coordinating and controlling the operation of generation
and transmission facilities in the National Interconnected Power System (NIPS) under supervision
and regulation of the Electric Energy National Agency (ANEEL).

The Brazilian power system generation is hydro dominated (about 75% of the installed capac-
ity) and characterized by large reservoirs presenting multi-year regulation capability, arranged in
complex cascades over several river basins. The hydro plants use stored water in the reservoirs to
produce energy in the future, replacing fuel costs from the thermal units. Since the water inflows
depend on rainfalls, the amount of future inflows is uncertain and cannot be predicted with a high
accuracy. Moreover, historical records indicate possibility of some very dry time periods which, of
course, can put a severe burden on hydro power generation.

Mathematical algorithms compose the core of the Energy Operation Planning Support System.
The former objective was to calculate an operation strategy which minimizes the expected value of
the operation costs over a planning period of time. This lead to formulation of large scale multistage
stochastic programming problems. Stochastic Dual Dynamic Programming (SDDP) method is the
main algorithmic tool and it is currently employed to solve the involved stochastic optimization
problems.

In the previous Technical Agreement signed between Georgia Tech and ONS, that continued
from September 2010 until August 2012, several topics regarding the problem formulation method-
ology and the SDDP algorithm were investigated and certain developments were suggested. One of
the main contributions of that project was the development of a risk averse approach based on the
Average Value-at-Risk (AV@R) (also called Conditional Value-at-Risk) risk measure that complies
with the SDDP methodology and results in a policy that is less sensitive to extreme scenarios
with a reasonable increase on average costs when compared with the risk neutral (traditional) ap-
proach. This methodology is currently in use in the planning procedures of the NIPS. The goal of
the current Technical Agreement report is to continue investigation of the involved modeling and
computational issues.

This document reports the investigations carried out from February to September 2015 regarding
guidelines for choosing parameters λ and α in the risk averse approach. Note that the optimal weight
of the risk averse component, governed by λ, should not give rise to load curtailment when there
is still enough stored energy in the system. The envisaged criterion consists of choosing a pair
(λ∗, α∗) that minimizes the expected deficit cost. As this criterion does not result in a closed-form
expression for the minimization problem, a grid search procedure was performed.

One of the difficulties of this search procedure is that, given a value for α, the correspond-
ing optimal λ value which minimizes the expected deficit cost is subject to the inherent solution
variability of the tree sampling and SDDP algorithm. We discuss briefly in Appendix A some
aspects of discretization of continuous distributions of the “true” model that result in the scenarios
tree employed in the SDDP algorithm. Two approaches, the usual Monte Carlo method and the
Wasserstein distance (also known as K-means algorithm) were considered. We present the numeri-
cal studies performed to assess the variability of SDDP solutions with respect to the tree sampling
and the tree branching (Nt). Solution variability control is important to ensure distinctions between
policies with different (λ, α) parameters.

This report is organized as follows. In section 2 we review the operation planning, based on
mean-AV@R problem formulation, and the solution approach currently used. In section 3 we present
the mathematical framework that justifies the proposed methodology to choose the parameters
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of the risk averse approach. In order to do so, we recall two equivalent formulations for the
multistage stochastic programming problem and formalize the adopted procedure. The criterion
for choosing (λ, α) is presented in section 4, and the performed numerical experiments are reported
in section 5. In particular, in section 5.3 one can see that, for the presented case, it was always
possible to find a value of (λ, α) that meets the criterion, and as reported in section 5.4 these
values are not distinguishable from the point of view of total thermal generation. Additionally,
section 5.5 indicates a preliminary result regarding the issue of when to revise the optimal value
choice. Section 6 presents the suggested algorithm to choose the optimal value for (λ, α). Finally,
section 7 is devoted to conclusion.

2 Problem general description

The goal of a risk averse approach currently in use for the planning operation problem is to avoid
large values of the costs for some possible realizations of the data process at every stage of the con-
sidered time horizon. The nested risk averse formulation of the corresponding multistage stochastic
programming problem is:

Min
A1x1=b1
x1≥0

cT1 x1 + ρ2|ξ1

 min
B2x1+A2x2=b2

x2≥0

cT2 x2 + · · ·+ ρT |ξ[T−1]

[
min

BT xT−1+AT xT =bT
xT≥0

cTTxT

] . (1)

Here ξ2, ..., ξT is the random process (formed from the random elements of the data ct, At, Bt, bt),
with ξ1 = (c1, A1, b1) being deterministic (not random). By ξ[t] = (ξ1, . . . , ξn) we denote the history
of the data process up to time t. The decision vectors xt in (1) are functions of the data process.
At time period t a decision xt = xt(ξ[t]) can depend on the past observations, but not on the future
values of the data process. A sequence xt(ξ[t]), t = 1, . . . , T , of such decision vectors is called a
policy, or decision rule. A policy xt(·), t = 1, . . . , T , is feasible if it satisfies all constraints of (1)
with probability one. A policy x∗t (·), t = 1, . . . , T , is said to be optimal if it is feasible and attains
the minimum value of (1).

We use the following (conditional) risk measures applied at every stage t of the process:

ρt|ξ[t−1]
[Z] = (1− λ)E

[
Z|ξ[t−1]

]
+ λAV@Rα

[
Z|ξ[t−1]

]
, (2)

where
E
[
Z|ξ[t−1]

]
denotes the conditional expectation of Z given ξ[t−1];

AV@Rα
[
Z|ξ[t−1]

]
is the conditional analogue of AV@Rα [Z], given ξ[t−1];

AV@Rα [Z] is the Average Value-at-Risk:
AV@Rα [Z] = inft∈R

{
t+ α−1E[Z − t]+

}
,

where λ ∈ [0, 1] and α ∈ (0, 1) are chosen parameters.

Note that the optimal policy depends on parameters λ and α, i.e., x∗t = x∗t (ξ[t], λ, α), t = 1, . . . , T ,
since the objective function depends on these parameters.

Regarding this formulation, there are two parameters which should be specified: λ and α. Recall
that these parameters have different functions. The parameter λ ∈ [0, 1] represents a compromise
between minimizing the total cost on average and risk aversion of high costs at every stage of the
process. For small values of λ the risk measure behaves almost like the risk neutral case, that is, the
resulting policy does not meet the requirement of smoothing high peaks of the operation cost due to
the extreme scenarios. On the other hand, for large values of λ one becomes too much risk averse,
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and the immediate consequence is to cut the load preemptively, which can lead to unnecessary
impacts on the society. Parameter α ∈ (0, 1) represents the α-percentile of extreme costs that are
to be avoided. This parameter is responsible for smoothing out extreme costs at every stage of the
process. Note that for α = 1 the AV@R1[·] is the expectation functional and for α tending to zero
the AV@Rα[·] tends to the max-risk functional.

Before we state a problem for choosing λ and α, we should mention how to solve problem (1)
with fixed parameters. In the next section we review the SDDP algorithm approach to solving
problem (1). We assume that the data process {ξt}Tt=1 is stagewise independent, i.e., random vector
ξt+1 is independent of ξ[t], t = 1, ..., T − 1.

2.1 Dynamic programming formulation

The dynamic programming formulation is useful to describe practical stochastic problems and to
present some classes of algorithms for their solutions. Its general idea is to decompose problem
(1) into smaller optimization subproblems connected by a recursive relation, where the base case
(t = T ) is a trivial problem and the last case (t = 1) is the problem to be solved.

Let us consider the stochastic programming problem (1) driven by the random data process
ξt = (ct, At, Bt, bt), t = 1, ..., T . In order to express the dynamic programming recursive relation,
we define value (also called cost-to-go) function at stage t = 2, . . . , T as

Qt(xt−1, ξ[t−1]) = ρt|ξ[t−1]

 min
Btxt−1+Atxt=bt

xt≥0

cTt xt + ρt+1|ξ[t]

[
· · ·+ ρT |ξ[T−1]

[
min

BT xT−1+AT xT =bT
xT≥0

cTTxT
]] .

(3)

Because of the stagewise independence assumption we have that if Z is a function of (ξt, . . . , ξT ),
then ρt|ξ[t−1]

[Z] = ρt[Z]. It follows that the cost-to-go functions do not depend on ξ[t−1] and can be
written as

Qt(xt−1) = ρt

[
min

Btxt−1+Atxt=bt
xt≥0

cTt xt + ρt+1

[
· · ·+ ρT

[
min

BT xT−1+AT xT =bT
xT≥0

cTTxT
]]

︸ ︷︷ ︸
Qt+1(xt)

]
, t = 2, . . . , T.

(4)

That is, we can write dynamic programming equations in the following recursive way. Set
QT+1(·) to be identically zero, and define going backward in time t = T, . . . , 2,

Qt(xt−1, ξt) := min
Btxt−1+Atxt=bt

xt≥0

cTt xt +Qt+1(xt), (5)

and
Qt(xt−1) = ρt [Qt(xt−1, ξt)] . (6)

Finally at the first stage the following problem should be solved

min
A1x1=b1
x1≥0

cT1 x1 +Q2(x1). (7)

For uniformity of notation, we set B1 and x0 as zero.
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2.2 Solving the problem

One of the difficulties in solving dynamic programming equations (5)–(7) numerically is evaluation
of the risk measure ρt[·]. Recall that

ρt[Z] = (1− λ)E [Z] + λAV@Rα [Z] . (8)

For continuous distributions evaluation of E[Z] and AV@Rα[Z] involves computation of multivariate
integrals. Typically these integrals cannot be written in a closed form and in high dimensional
cases cannot be computed with high accuracy. In order to solve the problem numerically we use a
discretization approach employing Monte Carlo sampling techniques.

We generate an iid sample of size Nt from the marginal distribution of random vector ξt,
independently for each t = 2, ..., T . By assigning equal probabilities 1/Nt to each generated point,
we create a discretization of the probability distribution of ξt. We denote by ξ̂t random vector
having this discretized distribution. The obtained random process ξ̂2, . . . , ξ̂T can be represented
by scenario tree with N =

∏T
t=2 total number of scenarios. Note that in such construction the

stagewise independence of the original process is preserved in the discretized process ξ̂2, . . . , ξ̂T . In
the numerical experiments we usually use the same number of generated samples at every stage
time t.

We denote by Ê[·] and ÂV@Rα[·] the expectation and the Average Value-at-Risk with respect
to the process ξ̂2, . . . , ξ̂T . Since the process ξ̂2, . . . , ξ̂T has a finite number of realizations, values

Ê[·] and ÂV@Rα[·] can be computed with a reasonable effort. Following eq.(8), we define the Monte
Carlo estimate ρ̂t of the risk functional ρt as

ρ̂t[Z] = (1− λ)Ê [Z] + λÂV@Rα [Z] . (9)

In that way we construct the so-called Sample-Average Approximation (SAA) of the “true”
problem (1). The dynamic programming equations for the SAA problem can be written as (compare
with (5)–(6))

Q̂t(xt−1, ξ̂t) = min cTt xt + Q̂t+1(xt)
s. t. Btxt−1 +Atxt = bt, xt ≥ 0,

(10)

Q̂t+1(xt) =

{
ρ̂t+1

[
Q̂t+1(xt, ξ̂t+1)

]
, t ∈ {1, . . . , T − 1},

0 , t = T ,

where ξ̂t = (ct, At, Bt, bt), for t = 1, . . . , T . An important property of SAA approach is that
solutions of (10) converge with probability 1 to a solution of the original (true) problem as the
sample size increases. Since we can evaluate ρ̂t+1[·], we focus on solving problem (10).

For solving problem (10) we use the Stochastic Dual Dynamic Programming (SDDP) algorithm.
The SDDP algorithm belongs to the Nested Cutting Plane class of algorithms and is specialized
for stagewise independent random processes. The main idea of such algorithms, based on cutting
planes, is to approximate the objective function from below by a convex piecewise linear function
and to refine this approximation iteratively. However, this approach is only possible if objective
function and constraints of the corresponding optimization problem are convex. Indeed, the SAA
approach (10) fulfills the convexity requirement on x variable for both cost-to-go and risk cost-to-
go functions. We denote by Qt+1(·) and Q

t
(·, ·) the lower approximations of Q̂t+1(·) and Q̂t(·, ·)
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respectively, constructed with the SDDP algorithm. At each iteration, new cuts are added to the
respective function improving its approximation:

Qold
t+1(xt) ≤ Qnew

t+1 (xt) ≤ Q̂t+1(xt) , ∀xt,
Qold
t

(xt−1, ξ̂t) ≤ Qnew
t

(xt−1, ξ̂t) ≤ Q̂t(xt−1, ξ̂t) , ∀xt−1, ∀ξ̂t.

A theoretical property of the SDDP algorithm is that it can compute an optimal solution of the SAA
problem in a finite number of iterations. However, computational time for the final convergence
can be extremely large. Therefore in practical applications the algorithm is stopped if there is no
significant improvement in Qt+1(·) over a given number of iterations.

In summary, for solving the true problem (1) with fixed λ and α, we approximate it by the
corresponding SAA problem, and consequently solve the SAA problem by the SDDP algorithm. We
will describe in the next section a procedure for choosing λ and α by using the solutions provided
by this approach.

3 Choice of parameters in the risk averse approach

Ideally we would like to choose values of the parameters λ and α which are “best” in some sense.

3.1 Optimal policy estimation

The connection between solutions of the dynamic programming equations (5)–(6) and the nested
formulation (1) is stated in the following theorem:

Theorem 3.1 A policy x∗t (ξ[t]), t = 1, . . . , T , is optimal if, and only if, for all t = 1, . . . , T and
almost every realization of the data process ξt, it holds that

x∗t (ξ[t]) ∈ arg min
xt∈Rnt

{
c>t xt +Qt+1(xt) : Btx

∗
t−1(ξ[t−1]) +Atxt = bt, xt ≥ 0

}
. (11)

Because of (11), optimal policy is a function x∗t = x∗t (x
∗
t−1, ξt), t = 1, ..., T .

As pointed in section 2.2, we cannot solve the dynamic programming equations (5)–(6) directly.
Instead, first we approximate problem (1) by the corresponding SAA problem (10). Similar to
(11), an optimal policy x̂t(ξ[t]), t = 1, . . . , T , of the SAA problem should satisfy the corresponding
dynamic programming equations:

x̂t(ξ[t]) ∈ arg min
xt∈Rnt

{
c>t xt + Q̂t+1(xt) : Btx̂t−1(ξ[t−1]) +Atxt = bt, xt ≥ 0

}
, (12)

for t = 1, . . . , T . Note that the sampled process ξ̂1, ..., ξ̂T of the SAA problem has a finite number of
realizations (scenarios). Therefore the requirements for equations (12) to hold for every and almost
every realization of the process ξ̂1, ..., ξ̂T are the same. We emphasize that the SAA cost-to-go
approximation Q̂t+1(·) also defines a feasible policy for the true problem when applying (12) to the
true process ξ1, ..., ξT . Additionally, it can be shown that as the sample sizes Nt, t = 2, ..., T , tend
to infinity, the optimal value and optimal solutions of the SAA problem converge with probability
one to their counterparts of the true problem.

As it was discussed in section 2.2, we solve the SAA problem by employing the SDDP algo-
rithm. At the end of the iteration process we get an estimate the cost-to-go functions Q̂t(xt−1)
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and Q̂t+1(xt), which are denoted by Q
t
(xt−1) and Qt+1(xt), respectively. We define the SDDP

estimator of the optimal policy as

xt(ξ[t]) ∈ arg min
xt∈Rnt

{
c>t xt + Qt+1(xt) : Btxt−1(ξ[t−1]) +Atxt = bt, xt ≥ 0

}
(13)

for t = 1, . . . , T . Note that equation (13) defines a feasible policy for the true as well as for the
SAA problems, depending from what distribution the process ξt = (ct, At, Bt, bt) is generated.

Considering the concepts introduced thus far, we are in a position to state the criterion for
choosing λ and α.

3.2 Criterion

Suppose that performance of a policy xt = xt(ξ[t]), t = 1, . . . , T , can be assessed by the following
statistic

E [F1(x1, ξ1) + · · ·+ FT (xT , ξT )] , (14)

where Ft(xt, ξt) is a selected index of decision xt and observation ξt at stage t. For example, in the
long term operation planning, if the selected index is the deficit (load curtailment) cost the resulting
statistic (14) is the expected value of total deficit cost. Assuming that smaller value of statistic
(14) the better, we can formulate the ideal criterion for choosing λ and α as follows. Consider an
optimal solution x∗t = x∗(ξ[t]), t = 1, ..., T , of the “true” problem (1). Such an optimal solution
depends on the parameters λ and α used in the respective risk measure (2). We write this explicitly
by denoting this optimal solution as x∗t (λ, α) = x∗t (ξ[t], λ, α), t = 1, ..., T , emphasizing that it is also
a function of λ and α. Consequently we would like to choose λ ∈ [0, 1] and α ∈ (0, 1) as optimal
solutions of the following problem

min
λ,α

E
[
F1(x∗1(λ, α), ξ1) + · · ·+ FT (x∗T (λ, α), ξT )

]
. (15)

In section 3.1, we emphasized that the optimal policy cannot be computed with a high accuracy.
Therefore, we resort to the SAA optimal policy estimator (12) to formulate a criterion which
approximates the ideal criterion (15). Considering this approach, an alternative objective function
is the plug-in estimator:

E|ξ̂ [F1(x̂1, ξ1) + · · ·+ FT (x̂T , ξT )] , (16)

where x̂t = x̂t(ξ[t], λ, α), for t = 1, . . . , T . Note that the policies x̂t = x̂t(ξ[t], λ, α) are functions of

the sampled process ξ̂ used in the corresponding SAA problem. The sampled process ξ̂ is generated
by Monte Carlo sampling and in itself is random, and hence in that way the corresponding scenario
tree is also random. Therefore the expectation (16) is conditional on the sampled process and hence
is a random variable. As such it is a subject to variations inherited from the respective variations
of sampled scenario trees. A less sensitive estimator of the objective function (15) is the expected
value of (16) with respect to the probability distribution of sampled scenario trees:

E
[
E|ξ̂ [F1(x̂1, ξ1) + · · ·+ FT (x̂T , ξT )]

]
. (17)
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Note that the computational effort to evaluate (17) can be prohibitive. Moreover, it is reasonable
to assume that both estimators (16) and (17) converge to the ideal objective function (15) as the
sample size increases.

In summary, the plug-in estimator (16) is sensitive to variations of the sampled SAA trees. The
expected plug-in estimator (17) is more robust, but requires computationally intensive calculations
to estimate SAA policy for several probability trees. In the next subsections we will describe with
more details how we solved approaches (16) and (17).

3.2.1 Single probability tree approach

Considering the plug-in estimator (16), we can approximate the ideal criterion (15) by the following
problem:

min
λ,α

E
[
F1(x̂1(λ, α), ξ1) + · · ·+ FT (x̂T (λ, α), ξT )

]
. (18)

As seen in section 3.1, the SDDP algorithm can be used to solve the SAA problem and therefore
we approximate problem (18) by

min
λ,α

E [F1(x1(λ, α), ξ1) + · · ·+ FT (xT (λ, α), ξT )] , (19)

where xt(λ, α), t = 1, . . . , T , is a policy produced by the SDDP algorithm with given λ ∈ [0, 1] and
α ∈ (0, 1).

Finally, we estimate the objective function expectation of (19) by averaging the corresponding
Monte Carlo samples:

min
λ,α

1

Nscen

Nscen∑
ω=1

F1(xω1 (λ, α), ξω1 ) + · · ·+ FT (xωT (λ, α), ξωT ), (20)

where ξωt , t = 1, ..., T , is a sampled process from the true process, for ω = 1, . . . , Nscen, and
xωt (λ, α) = xt(ξ

ω
[t], λ, α), for t = 1, . . . , T .

3.2.2 Several probability trees approach

In this section, we consider the case when one can calculate several SAA optimal policies x̂t =
x̂t(ξ[t], λ, α), for t = 1, . . . , T , each one associated with a sampled SAA tree. Considering the
expected plug-in estimator (17), we can approximate the ideal criterion (15) by the following
problem:

min
λ,α

E
[
E|ξ̂
[
F1(x̂1(λ, α), ξ1) + · · ·+ FT (x̂T (λ, α), ξT )

]]
. (21)

We use the SDDP algorithm to solve the SAA problem and therefore we approximate problem (21)
by

min
λ,α

E
[
E|ξ̂
[
F1(x1(λ, α), ξ1) + · · ·+ FT (xT (λ, α), ξT )

]]
, (22)

where xt(λ, α), t = 1, . . . , T , is a policy produced by the SDDP algorithm with given λ ∈ [0, 1] and
α ∈ (0, 1). Consequently the outer expectation in the expected plug-in estimator (22) is estimated
by the respective averaging. This leads to the following optimization problem, for ϑ = 1, . . . , Ntrial

sampled SAA trees and ω = 1, . . . , Nscen scenarios,

min
λ,α

1

NtrialNscen

Ntrial∑
ϑ=1

Nscen∑
ω=1

F1(xϑ,ω1 (λ, α), ξω1 ) + · · ·+ FT (xϑ,ωT (λ, α), ξωT ). (23)
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4 Long term operation planning problem

The dynamic programming formulation for the long term operation planning problem can be written
as:

Qt([vt, a[t−p,t−1]], ηt) = min
∑

k∈K

(∑
j∈Tk cjgtj +

∑
i∈Uk

c̃iDef ti

)
+ βQt+1([vt+1, a[t−p+1,t]])

s.t. vt+1 = vt + at + qt + st

at = diag (ηt)(Φt,0 +
∑p

ν=1 Φt,νat−ν)

qtk +
∑

j∈Tk gtj +
∑

i∈Uk
Def ti +

∑
l∈Ωk

(ftlk − ftkl) = dtk, ∀k ∈ K
0 ≤ vt+1 ≤ v, 0 ≤ qt ≤ q, 0 ≤ st,
g ≤ gt ≤ g, 0 ≤ Def t ≤ Def , f ≤ ft ≤ f

(24)

Qt+1([vt+1, a[t−p+1,t]]) =

{
ρt+1

[
Qt+1([vt+1, a[t−p+1,t]], ηt+1)

]
, t ∈ {1, . . . , T − 1}

0 , t = T
, (25)

for all t = 1, . . . , T .
The risk measure used considers a mean-AV@R convex combination, given by:

ρt[Zt] = (1− λ)E[Zt] + λAV@Rα[Zt]

with λ ∈ [0, 1] and α ∈ [0, 1] being chosen parameters.
The objective function

∑
k∈K

∑
j∈Tk

cjgtj +
∑
i∈Uk

c̃iDef ti

+ βQt+1([vt+1, a[t−p+1,t]])

represents the sum of the total cost for thermal generation and deficit with Qt+1([vt+1, a[t−p+1,t]]),
where:

β discount factor;
K subsystem set;
Tk thermal set for subsystem k; and
Uk deficit set for subsystem k.

The energy balance equation for each reservoir k is:

vt+1 = vt + at + qt + st

where:
vt stored energy in the reservoir at the beginning of stage t;
at energy inflow during stage t;
qt generated energy during stage t; and
st spilled energy during stage t.

The time-series model for the energy inflow is:

at = diag(ηt)

(
Φt,0 +

p∑
ν=1

Φt,νat−ν

)
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where:
at−ν energy inflow during stage t;
Φt,ν coefficient of PMAR vector time-series model; and
ηt multiplicative noise of PMAR. (independent random variable)

The load balance equation, in MW month, for each subsystem k and stage t is:

qtk +
∑
j∈Tk

gtj +
∑
i∈Uk

Def ti +
∑
l∈Ωk

(ftlk − ftkl) = dtk

where:
dtk load;

qtk hydro generation;∑
j∈Tk gtj thermal generation;∑

i∈Uk
Def ti deficit generation;∑

l∈Ωk
(ftlk − ftkl) net energy interchange;

ftlk energy flow from subsystem l to subsystem k; and

Ωk set of subsystems directly connected to subsystem k.

Bounds on variables are:
0 ≤ vt+1 ≤ v stored energy lower and upper bound;

0 ≤ qt ≤ q generated energy lower and upper bound;

0 ≤ st non-negative spillage energy;

g ≤ gt ≤ g thermal generation lower and upper bound;

0 ≤ Def t ≤ Def deficit energy lower and upper bound; and

f ≤ ft ≤ f energy flow lower and upper bound.

The main idea of the deficit is to penalize the load cut by a convex piecewise linear cost function
which is dependent on the load cut depth. Regarding this approach, it is important to emphasize
that the deficit variable with highest associated cost is unbounded above.

For each stage t the decision vector is xt = (vt+1, qt, st, gt,Def t, ft, at). In the long term opera-
tion planning problem the only considered uncertainty is the independent multiplicative noise, that
is, ξt = ηt, and the cost-to-go function depends only on [vt, a[t−p,t−1]] of last p previous decision
x[t−p,t−1]. In this way, it is usual to write Qt([vt, a[t−p,t−1]], ηt) instead of Qt(x[t−p,t−1], ηt).

4.1 Criterion for choosing (λ, α)

Given a pair (λ, α), the current implementation of the risk averse SDDP method aims to minimize
the average total cost with penalization of its high quantiles. Note that, for a given combination
of the pair (λ, α), the performance of the resulting policy, as measured by considering additional
criteria, may vary. For instance, one can consider several other variables of interest, apart from the
total cost, to provide additional information regarding the performance of a proposed operation
policy, such as deficit cost, thermal cost, deficit risk, etc. In this Report, the criterion we propose to
choose among different pairs (λ, α) is to use the combination that results in the minimum expected
total deficit cost.
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For the “true” problem the criterion is given by:

E

∑
k∈K

∑
i∈Uk

c̃i

(
Def ∗1i + · · ·+ Def ∗T i

) ,
where Def ∗ti = Def ∗ti(ξ[t], λ, α). Following the same reasoning as before, the SAA approximation is
given by

E

E|ξ̂
∑
k∈K

∑
i∈Uk

c̃i

(
D̂ef 1i + · · ·+ D̂ef T i

) ,
where D̂ef ti = D̂ef ti(ξ[t], λ, α). The corresponding SDDP approximation is

E

E|ξ̂
∑
k∈K

∑
i∈Uk

c̃i

(
Defϑ,ω1i + · · ·+ Defϑ,ωT i

) ,
where Defϑ,ωti = Defti(ξ

ω
[t], λ, α, ξ̂

ϑ
[T ]). Finally, the expectation approximation is

1

NtrialNscen

Ntrial∑
ϑ=1

Nscen∑
ω=1

∑
k∈K

∑
i∈Uk

c̃i

(
Defϑ,ω1i + · · ·+ Defϑ,ωT i

) .
We denote, for further reference, the following estimate for each SAA tree

CDefϑ =
1

Nscen

Nscen∑
ω=1

∑
k∈K

∑
i∈Uk

c̃i

(
Defϑ,ω1i + · · ·+ Defϑ,ωT i

)
for ϑ = 1, . . . , Ntrial.

Similar reasoning follows if we substitute the deficit variable Def ti by the thermal generation
variable gti.

5 Numerical experiments

This section presents the numerical experiments that were performed in order to evaluate the
proposed criterion for choosing the values of λ and α.

5.1 Case study

The numerical experiments described in this report were carried out considering instances of multi-
stage linear stochastic problems based on an aggregate representation of the Brazilian Intercon-
nected Power System long-term operation planning problem, as of January 2015. This system can
be represented by a graph with four generation nodes – comprising sub-systems Southeast (SE),
South (S), Northeast (NE) and North (N) – and one (Imperatriz, IM) transshipment node (see
Figure 1).

The load of each area must be supplied by local hydro and thermal plants or by power flows
among the interconnected areas. A slack thermal generator of high cost that increases with the
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Figure 1: Aggregate representation of the Brazilian interconnected power system

amount of load curtailment accounts for load shortage at each area (Table 1). Interconnection
limits between areas may differ depending on the flow direction, see Table 2. The energy balance
equation for each sub-system has to be satisfied for each stage and scenario. There are bounds on
stored and generated energy for each sub-system aggregate reservoir and on thermal generations.

% of total
Cost

load curtailment

P1 0 – 5 1420.34
P2 5 – 10 3064.15
P3 10 – 20 6403.81
P4 20 – 100 7276.40

Table 1: Deficit costs and depths ($/MWh)

The long-term planning horizon for the Brazilian case comprises 60 months, due to the existence
of multi-year regulation capacity of some large reservoirs. In order to obtain a reasonable cost-to-go
function that represents the continuity of the energy supply after these firsts 60 stages, a common
practice is to add 60 more stages to the problem and consider a zero cost-to-go function at the end
of the 120th stage. Hence, the objective function of the planning problem is to minimize the convex
combination of the expectation and Average Value-at-Risk costs along the 120 months planning
horizon, while supplying the area loads and obeying technical constraints. The total operation cost
is the sum of thermal generating costs plus a penalty term that reflects energy shortage.

A scenario tree consisting of 1×N2×N3× · · ·×N120 scenarios, for 120 stages, was constructed

to
SE S NE N IM

from

SE – 7500 1000 0 4000
S 5470 – 0 0 0

NE 600 0 – 0 3500
N 0 0 0 – ∞
IM 2940 0 3300 4407 –

Table 2: Interconnection limits between systems (MWave)
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based on sampling of a periodic autoregressive multivariate statistical (PMAR) model with multi-
plicative error for the energy inflow record. In this (seasonal) model, the empirical distribution for
each month and for every system is used to represent the corresponding noise distribution. The
scenario tree is generated by sampling from these empirical distributions. The input data for this
statistical model is based on 80 observations of the natural energy inflow (from year 1931 to 2010)
for each of the considered 4 systems.

The study case general data, such as hydro and thermal plants data and interconnections
capacities, were taken as static values throughout the planning horizon (120 months). The monthly
seasonality of the demand is taken into account, but the annual value is constant. The energy inflows
may vary along the stages.

5.2 Choice procedure

Closed form expressions for the minimum expected total deficit cost objective values, as functions
of (λ, α), are not available. Therefore we resorted to computing objective values for a grid of λ and
α values. We considered α values equal to 5%, 10%, 20% and 50%, and λ values ranging from 0 to
60%. Note that λ = 0 is equivalent to the risk neutral approach.

Let us also mention some involved computational issues. We are really interested in perfor-
mance of different criteria for the “true” model with continuous distributions of the corresponding
random vectors ξt. The discretization procedure is applied for computational purposes. The ob-
tained so-called Sample Average Approximation (SAA) problems are functions of the constructed
discretizations and as such are subject to variations. The Monte Carlo sampling approach allows to
validate variability of the obtained optimal values for different sample sizes Nt. Previous numerical
experiments [3] showed that for sample sizes Nt = 100, t = 2, ..., T , the computed optimal values
became reasonably stable.

The AV@Rα risk measure penalizes Ntα extreme scenarios, where Nt is the number of branching
scenarios per stage. Therefore the number Ntα should not be “too small”. For example for Nt = 100
and α = 0.1 we have Ntα = 10, which seems to be reasonable.

As mentioned in section 2.2, the main criterion proposed for choosing λ is the expected value
of the total deficit cost. In order to select the pair (λ, α) that meet the criteria of minimizing the
expected total deficit cost, the numerical experiments were performed considering:

• 20 policies defined with 20 sampled scenarios trees, each one generated from PMAR model
by Monte Carlo sampling;

• for each scenario tree, the policy is defined considering as stopping criteria 3000 iterations,
with one in-sample forward scenario for each iteration;

• for each of the 20 policies defined by 20 sampled scenario trees, 5000 index values were
calculated considering a fixed out-of-sample set of 5000 energy inflow scenarios, each one with
120 stages (10 years), generated using the same PMAR model. Each index value was obtained
adding the corresponding variable along the 120 stages.

5.3 (λ, α) choice

Figure 2 shows the deficit costs for the considered (λ, α) pairs. One can see that for every value of
α it was possible to find a λ value that minimizes E[CDef]. Moreover, although the optimal solution
(λ, α) differs, the minimum E[CDef] value is approximately the same for all cases.

13



Figure 2: (λ, α) choice

Figure 3a shows a smooth surface adjusted to the experimental results using the non-parametric
regression technique loess (locally weighted scatterplot smoothing). The corresponding adjusted
contour curve, Figure 3b, suggests that we can always find the same minimum E[CDef] value for
different combinations of λ and α.

14



(a) adjusted surface

(b) adjusted contour curve

Figure 3: E[CDef]× (λ, α)
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5.4 Deficit and thermal costs

The results of section 5.3 lead to the conjecture that it is always possible to find a pair (λ, α) that
meet the criterion of minimizing E[CDef]. A natural question that arises is if one can propose an
additional criterion to distinguish among these (λ, α) optimal pairs. A possible additional criterion
is to minimize the total thermal costs for all (λ, α) minimum expected total deficit cost E[CDef].
In order to assess these proposition, we plotted the average thermal generation costs against the
average deficit cost along the planning horizon. Considering the smooth curve adjusted with loess
to the data obtained for the α values 5%, 10%, 20% and 50%, Figure 4 shows that there is no clear
distinction: the operating policies associated with (λ, α) corresponding to the minimum E[CDef]
result in approximately the same values for the average thermal costs.

Additionally, these graphs show that the minimum E[CDef] sensitivity to the λ values diminishes
as α increases. In this way, a cautious option is to select the greatest possible value for α.

(a) α = 5% (b) α = 10%

(c) α = 20% (d) α = 50%

Figure 4: Thermal and deficit operation cost ($)
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5.5 Parameter revision

In this section we address the issue of when, if ever, the defined parameters (λ, α) have to be
reassessed. In order to do so, we performed a simplified study regarding the sensitivity of the
choice with respect to the relation supply/demand as a proxy to the variation of the power system
configuration. The experiments considered that, for the same hydropower system, the demand
would increase up to 110% of the designed system. Note that considering the demand equal to
110% is a significant departure from the demand for which the hydropower system was designed
and implies significant differences in the corresponding operation policy.

Figure 5 shows that, given α = 5%:

• it was possible to identify a λ value that corresponds to the minimum expected value of the
deficit cost;

• the E[CDef] differs according to the relation supply/demand, that is, the optimal pair (λ, α)
depends on the system configuration;

• the proposed methodology can be applied for a rather large range of supply/demand relations.

Figure 5: (λ, α) sensitivity to supply/demand relation
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6 Algorithm

The reported numerical studies showed that:

• for α ∈ (5%, 50%) there is a λ value for which the minimum expected value of the deficit cost
are “equal”;

• as the α value increases, the sensitivity of the estimation of minimum expected value of the
deficit cost with λ diminishes;

In other words, the variability of the criterion with λ is smaller the greater the value of α is.
Based in this reasoning, we propose to select the pair (λ, α) associated with the largest value for α
that satisfies the min E[CDef] criterion. The following Algorithm 1 implements this procedure.

Algorithm 1: Algorithm to select (λ, α)

1 Initialization
2 choose αref (=5%, e.g.)
3 set k ← 1

4 Step 1 obtain reference value
5 find λref ∈ [0, 1] that minimizes E[CDef]

∣∣
λ,αref

6 define Vref ← E[CDef]
∣∣
λref, αref

7 Step 2 find new λ and α
8 increase αk with αk ∈ (0, 1)
9 find λk ∈ [0, 1] that minimizes E[CDef]

∣∣
λ,αk

10 define Vk ← E[CDef]
∣∣
λk,αk

11 Step 3 Convergence test
12 if Vk ≤ Vref then
13 k ← k + 1
14 go to Step 2

15 else
16 (λ∗, α∗)← (λk−1, αk−1)
17 return (λ∗, α∗)

One possible way to implement the proposed procedure is to start with a crude grid for λ and
then refine the studies in the region of interest, as can be seen in Figure 6.
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(a) Initial Monte Carlo sampling

(b) Refined Monte Carlo sampling

Figure 6: λ search procedure — E[CDef] ($)
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7 Conclusion

This report aims at providing a methodology for defining the λ value to be used in mean-AV@R
criterion of the operation planning policy procedure.

The envisaged criteria consists in finding the (λ, α) that minimizes the expected deficit cost.
Given that there is no closed expression to evaluate the policies indexes as a function of (λ, α),
a grid procedure was used. In order to discriminate indexes among different (λ, α)’s with SDDP
algorithm it is necessary to have sufficient precision in the numerical experiments. In this report a
value of branching 200 was used as it represents a good compromise between the necessary precision
and associated computational effort. Appendix A details the numerical experiments that justify
this option.

The results indicate that for α in the range from 5% to 50% it was possible to find a value for λ
that minimizes the deficit cost average index, E[CDef]. Moreover, for the given system configuration,
it was possible to define a (λ, α) such that the E[CDef] is approximately the same. In order to get
the less sensitivity of the proposed criterion with the (λ, α) pair, we suggest to choose the (λ, α)
pair associated to the highest value for α.

On the other hand, the “optimal” (λ, α) pair is associated with the configuration of the system.
Therefore, one must review its definition if the system configuration changes.
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Appendix A Monte Carlo and K-means scenario tree generation

Recall that in the “true” model the involved random process ξ1, ..., ξT , with ξ1 being deterministic,
is modeled as stagewise independent with d-dimensional random vectors ξt, t = 1, ..., T , having
continuous distributions. In order to solve the corresponding multistage program numerically one
has to discretize the continuous distribution of each ξt. In the Monte Carlo approach, a random
sample of size Nt of ξt is generated. In an implicit way, this generates a scenarios tree with
N =

∏T
t=2Nt number of scenarios.

Note that even with a moderate number of scenarios per stage, say each Nt = 100, the to-
tal number of scenarios N quickly becomes astronomically large with increase of the number of
stages. This indicates that from the point of view of the number of scenarios, complexity of multi-
stage stochastic programming problems grows exponentially with increase of the number of stages.
In other words it is hopeless to try to solve multistage programs by enumerating all scenarios.
The SDDP method approaches the problem in a different way by using an approximate dynamic
programming techniques.

Yet an important question is how to discretize the continuous distribution of each random
vector ξt. One can be tempted to resort to other approaches, apart from the Monte Carlo method,
to discretization of the distribution of ξt. The aim of these approaches is to approximate the
distribution of ξt in a certain uniform way. Since distribution of each ξt is approximated for
different stages independently of each other, we drop the subscript t and consider a random vector
ξ having probability distribution P supported on a set Ξ ⊂ Rd.

Let us consider the Wasserstein distance approach (cf., Pflug and Pichler [1]). This approach
aims at constructing finite approximation1 Pk =

∑k
i=1 piδ(µi) by solving the following optimization

problem2

min
µ1,...,µk∈Rd

∫
min

{
‖ξ − µ1‖2, ..., ‖ξ − µk‖2

}
dP (ξ). (26)

Given a solution µ?1, ..., µ
?
k of problem (26), space Rd is partitioned into subsets Ξi consisting of

those points of Rd which are closest to µ?i , i = 1, ..., k. Consequently to probabilities p?i are assigned

values P (Ξi), and P ?k =
∑k

i=1 p
?
i δ(µ

?
i ) is taken as the required discretization of P . An important

property of problem (26), which is specific for Wasserstein distance of order r = 2, is the following
relation between optimal partition and center points µ?i :

µ?i =

∫
Ξi
ξdP (ξ)

P (Ξi)
, i = 1, ..., k. (27)

Note that problem (26) could have more than one optimal solution. Suppose for example that
random vector ξ has standard normal distribution N(0, Id). Then for any orthogonal matrix3 Q,
the random vector QTξ has also standard normal distribution4 and the transformation µi 7→ Qµi,
i = 1, ..., k, will not change the objective value of problem (26). Indeed,

‖ξ −Qµi‖2 = (ξ −Qµi)T(ξ −Qµi) = (QTξ − µi)T(QTξ − µi) = ‖QTξ − µi‖2

1By δ(µ) we denote probability distribution having mass 1 at µ ∈ Rd. Unless stated otherwise, ‖x‖ =√
x21 + ...+ x2k denotes the Euclidean norm of vector x ∈ Rk.
2Here we consider Wasserstein distance of order r = 2. This is motivated by applicability of the K-means algorithm

discussed below.
3Matrix Q is orthogonal if QQT = Id, where Id denotes d× d identity matrix.
4If X ∼ N(µ,Σ) then, for any linear transformation T , it holds TX ∼ N(Tµ, TΣT>).
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has the same distribution as ‖ξ − µi‖2.
In order to solve problem (26) we can apply the Sample Average Approximation (SAA) method.

We can write problem (26) as
min
µ

EP [F (µ, ξ)], (28)

where µ = (µ1, ..., µk),
F (µ, ξ) = min

{
‖ξ − µ1‖2, ..., ‖ξ − µk‖2

}
and EP denotes the expectation with respect to probability distribution P . Let ξ1, ..., ξn be a
random sample, of large size n, of the random vector ξ. The SAA method estimates the expectation
EP [F (µ, ξ)] by the sample average n−1

∑n
j=1 F (µ, ξj). That is, problem (26) is approximated by

the SAA problem

min
µ1,...,µk∈Rd

n∑
j=1

min
{
‖ξj − µ1‖2, ..., ‖ξj − µk‖2

}
. (29)

Given a solution µ∗1, ..., µ
∗
k of problem (29), the set S = {ξ1, ..., ξn} is partitioned into subsets

Si consisting of those points of S which are closest to µ∗i , i = 1, ..., k, and probabilities p?i are
approximated by p∗i = |Si|/n.

It is known that an optimal solution of the SAA problem (29) converges w.p.1 as n tends to
infinity to the set of optimal solutions of problem (26). In particular if problem (26) has unique
optimal solution, then an optimal solution of the SAA problem (29) converges w.p.1 to this optimal
solution (e.g., [2, section 5.1.1]). Also by the Law of Large Numbers the estimates p∗i = |Si|/n
converge w.p.1 to the respective probabilities p?i .

To solve problem (29) the standard K-means algorithm, also referred to as Lloyd’s algorithm,
uses an iterative refinement technique. Given an initial set of k means µ1, ..., µk, the algorithm
proceeds by alternating between two steps:

Assignment step. The set S is partitioned into subsets Si, i = 1, ..., k, according to the minimal
distances to the points µ1, ..., µk.

Update step. Update points µi by the respective averages 1
|Si|
∑

ξj∈Si
ξj , i = 1, ..., k.

This algorithm converges when the assignments no longer change.

Remark 1 Since the distribution of random vector ξ is supported on the set Ξ with probability
one, the sample vectors ξj belong to Ξ, j = 1, ..., n. If the set Ξ is convex, then it follows that the
averages 1

|Si|
∑

ξj∈Si
ξj also belong to Ξ. Therefore in case the set Ξ is convex, the iteration points

µi in the K-means algorithm stay in the set Ξ.

The problem (29) is not convex and is computationally difficult5. The above K-means algorithm
may converge to a local, rather than global, solution of problem (29). If the original problem (26)
has one optimal solution µ? = (µ?1, ..., µ

?
k), then as it was pointed above a globally optimal solution

of (29) converges with probability one to µ? as n tends to infinity. However, it could happen that
problem (26) has more than one optimal solution. In that case an optimal solution of (29) converges
to the set of optimal solutions of (26) and may oscillate between different points of that optimal
set.

5Partitioning of the set S into optimal subsets Si is an NP-hard problem.
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Remark 2 As far as this procedure is used for generating scenarios for the SDDP algorithm let
us make the following observations. If the problem (26) has unique optimal solution, then for large
n, say n = 104 and k = 50, variability of an optimal solution of problem (29) could be a result
of computing a local rather than global solution of problem (29). If problem (26) has more than
one optimal solution, then this also may effect variability of optimal solutions of problem (29). In
any case increasing the sample size n, say from n = 104 to n = 105 or even n = 106, does not
help in verification quality of the constructed discretization of the “true” problem. That is, for
large n, variability of the obtained discrete approximation P ∗k =

∑k
i=1 p

∗
i δ(µ

∗
i ) could be a result

of not computing a global solution of the problem (29) or because problem (26) has more than
one optimal solution. In other words increasing the sample size n, used in the above K-means
algorithm, does not necessarily leads to better approximation of the corresponding distribution and
therefore to better approximation for the required integral values. This can be compared with the
Monte Carlo (MC) sampling approach which allows estimation of variability of the corresponding
sample average approximations, and hence gives an indication of the required sample sizes Nt.

Remark 3 Let us point out that in order to obtain an approximating measure, of the form P ?k =∑k
i=1 p

?
i δ(µ

?
i ), with the distance (to the “true” measure P ) no more than ε > 0, a total of k = O(ε−d)

approximating points are necessary (cf., [1, p.147]). That is, the number k of points required to
have an accurate approximation of the distribution P grows exponentially with the dimension d.
However we do not need an accurate approximation of the continuous distribution P , but rather our
goal is to obtain a good estimation of the integral values used in the respective objective functions.
From this point of view we may compare accuracy of the K-means and the MC approaches as
tools for constructing discretizations (scenarios) for the “true” problem with the same number of
discretization points per stage. It could be noted that the MC method does not try to construct
an accurate approximation of the continuous distribution P . Rather it is aimed at estimation of
the corresponding integral values. Its complexity does not depend directly on the dimension d and
is of order O(ε−2).

Another important advantage of the MC approach is that it allows to evaluate variability of the
constructed approximations of the “true” problem by resampling of scenarios, i.e., by constructing
several SAA problems and evaluating their variability. This is important in making a decision of
how many discretization points per stage to use. On the other hand ideally the K-means reduction
produces just one point (for given number k of discretization points) – coming from the optimal
solution of problem (26). As it was pointed before, for large sample size n used in constructing
the approximating problem (29), an observed variability of the discretization points produced by
the K-means algorithm could be attributed to computing local optima rather than using different
samples ξ1, ..., ξn.

A.1 Monte Carlo and K-means policy evaluation

The purpose of this section is to examine the performance of both Monte Carlo sampling and
K-means reduction approaches with respect to the variability of the results obtained. Monte
Carlo sampling is the standard way to generate scenario trees and presents well known statistical
properties. The main justifications for using the K-means reduction method are: this is the current
approach used for generating scenarios tree in the official implementation used in Brazil and it is
also a common technique proposed in the literature.

The numerical experiments setting is the same as the one described in section 5.3. All exper-
iments reported in this appendix considered a fixed value of 15% for λ, 5% for α parameter, and
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branching values Nt =25, 50, 75, 100, 125, 150, 175, 200, 225 for all stages t in {2, . . . , 120}. As
usual, the first stage is assumed known.

For each one of the 20 different scenario trees defined by the same branching size Nt, the
corresponding policy were estimated using the SDDP algorithm. The performance of each one of
these policies was assessed considering a fixed set of 5000 out-of-sample energy inflow scenarios
generated by the same PMAR model used in the policy calculation. Preliminary analysis was
based on a set of box plot graphs with 20 values for the objective function lower bound, average
and conditional tail expectation (CTE) operation cost.

Figure 7 shows the box plot for the 20 values corresponding to the lower bound of the objective
function for both Monte Carlo sampling and K-means reduction. One can see that, as the branching
increases from Nt = 25 up to Nt = 225, the values of the lower bound costs for the Monte Carlo
sampling show no trend and the associated variability decreases, as predicted by the theory. On
the other hand, although the K-means reduction shows small variability for all branchings, the
average values are underestimated with respect to the Monte Carlo sampling results and increase
with branching. Similar behavior can be observed in the total average operation, see Figure 8a.

Figure 7: mean-AV@R approach objective function lower bound ($)

Considering branching Nt = 25, the 20 values for the lower bound of the objective function for
MC sampling range from 200. × 109 to 300. × 109. In contrast, for K-means reduction the lower
bound values range is about 140.× 109 to 160.× 109, see Figure 7. Table 3 shows the average and
standard deviations results obtained considering Monte Carlo sampling and K-means reduction
policies for the lower bound of the objective function, the operation costs and the conditional tail
expectation for the 5% highest costs values, CTE0.05.
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Scenario Lower Operation cost
Tree Bound Average CTE0.05

Monte Carlo
average 237,512 118,646 235,382
std dev 22,569 3,674 2,756

K-means
average 147,990 108,449 311,800
std dev 2,039 660 7,026

Table 3: Risk averse policy evaluation for branching 25, λ = .15 and α = 0.05 (106$)

It is interesting to note in Figure 8b that CTE0.05 for the MC sampling is smaller and relatively
constant along the branching values when compared to the corresponding K-means reduction re-
sults. This can serve as a warning regarding the risk averse protection one gets with the use of
the K-means reduction. For instance, considering again branching 25, one can be misled to think
that using the K-means reduction the protection provided by risk averse policy results also in
cheaper decisions for critical scenarios. However, while the policy derived by the use of K-means
reduction incurs in relatively small increase for average operation costs when compared to the MC
sampling (about 35% smaller), it turns out that for the more expensive scenarios the CTE0.05 is
about 30% greater than the ones incurred with the MC sampling, see Table 3. In other words, for
the same branching value, the K-means reduction results in a policy that is more expensive for
critical scenarios than the MC ones.

25



(a) Average

(b) CTE0.05

Figure 8: mean-AV@R approach operation cost ($)
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A.2 Setting the branching value

In this section, we will use both Monte Carlo sampling andK-means reduction to define a reasonable
branching value that enables the discrimination among different λ’s. Such branching should ideally
be one value for the all λ values considered in the search procedure. That is, an unique scenario
tree size should fit all the numerical experiments envisaged to define the mean-AV@R parameter
choice. It is also important to point that the branching size has a great impact on policy computing
time. Therefore, the chosen value for branching should represent a feasible compromise between
precision and CPU effort.

The numerical experiments consider λ = 0.00 (risk neutral), 0.10, 0.15 and 0.20 and branching
values of 25, 100 and 200. Figures 9 and 10 show the average and the conditional tail expectation
(5% highest values) of the total deficit costs. One can see that, for each given λ, the variability
of average and CTE0.05 costs decreases as branching increases. Also, the policies obtained with
the K-means reduction result in more deficit costs than the ones associated with the Monte Carlo
sampling.

Figures 11, 12 and 13 reinforces that the policies provided by the K-means reduction underes-
timate the necessary effort to meet the demand when compared to the ones obtained with Monte
Carlo sampling.

As observed with results of the previous section, branching 25 shows large variability which
reduces from branching 100 onwards. In this report, we will use branching 200 to perform the
numerical experiments regarding λ choice.
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(a) Monte Carlo sampling

(b) K-means reduction

Figure 9: Total deficit cost, average ($)
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(a) Monte Carlo sampling

(b) K-means reduction

Figure 10: Total deficit cost, average and CTE0.05 ($)
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(a) Monte Carlo sampling

(b) K-means reduction

Figure 11: Total operation cost, average ($)
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(a) Monte Carlo sampling

(b) K-means reduction

Figure 12: Total operation cost, average and CTE0.05 ($)
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(a) Monte Carlo sampling

(b) K-means reduction

Figure 13: Total thermal operation cost, average and CTE0.05 ($)
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A.3 Conclusion

In order to discriminate indexes among different (λ, α)’s performance for the policies defined with
SDDP algorithm it is necessary to have sufficient precision in the numerical experiments. In this
way, the scenario tree size was reassessed considering two generation methods: the Monte Carlo
sampling and the K-means reduction approach.

The reported experiments show that:

• K-means objective function and total average operation costs show little variation for all λ
considered. However, numerical results suggest that these values are underestimated when
compared to the corresponding Monte Carlo sampling;

• MC sampling policies are more stable than the K-means reduction ones and result in better
smoothing of high operation costs;

• branching equal to 25 produces large variation for policy indexes and therefore is insufficient
for both operation planning and (λ, α) choice;

• although branching around 100 provides sufficient precision, in this report a value of branching
equal to 200 was used as it represents a good compromise between the necessary precision
and associated computational effort.

In light of this reasoning, we suggest that the Monte Carlo approach is better suited for use in
the SDDP algorithm.
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