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Rua Júlio do Carmo, 251 - Cidade Nova
20211-160 – Rio de Janeiro – RJ - Brasil

November, 2016



Marginal cost smoothing 1 of 33

Contents

1 Introduction 2

2 Marginal cost 2
2.1 Deterministic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Dynamic setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 The usual approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Volatility 9
3.1 Volatility of AR(p) and ARCH(p) models . . . . . . . . . . . . . . . . . . . . 10
3.2 Volatility of marginal cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Marginal cost smoothing 13
4.1 Objective function quadratic regularization (Tichonov) . . . . . . . . . . . . 15

4.1.1 Regularization with respect to the storage . . . . . . . . . . . . . . . 16
4.2 Optimal value quadratic regularization (Moreau-Yosida) . . . . . . . . . . . 16

4.2.1 Example: absolute value function . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Cost-to-go function regularization with respect to the demand . . . . 18

5 Case-study 19
5.1 System general data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Case study for objective function regularization . . . . . . . . . . . . . . . . 20

6 Conclusion 27

A An alternative approach to define Marginal Costs 29
A.1 Numerical experiments, risk averse case . . . . . . . . . . . . . . . . . . . . . 29

A.1.1 The usual approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
A.1.2 The alternative approach . . . . . . . . . . . . . . . . . . . . . . . . . 32

CONTENTS Version 1.0



Marginal cost smoothing 2 of 33

1 Introduction

This work emerged from a concern about volatility of the marginal costs officially published
by the Brazilian operation planning model. In this document we discuss the definition of
marginal cost and its volatility, the usual method for computing marginal costs, a method
to assess the volatility and some proposals on how the intrinsic volatility can be regulated.
This activity is part of the ONS-Gatech technical agreement.

This report is organized as follows. Section 2 describes the concept of marginal cost in
the context of power system planning. In particular, it brings to the fore the fact that the
total operation cost is a non-differentiable function for all demand values. The slightly more
involved case of the dynamic setting is discussed and two alternate methods to evaluate the
marginal costs are described and illustrated. The concept of volatility is briefly discussed in
Section 3 and illustrated with the aid of two traditional time series model, AR and ARCH.
The evaluation of the volatility in the context of the SDDP algorithm is described. With
focus on the effects that the SDDP algorithm could have in volatility, Section 4 introduces
a methodology based on quadratic regularization to smooth the marginal cost aiming at
reducing this effect. Two approaches are considered: one focusing on the objective function
and the other on the cost-to-go function. A case study illustrating the use of the marginal
cost smoothing methodology applied to the objective function is presented in Section 5.
Finally, Section 6 summarizes the main conclusions and points to some further studies.

2 Marginal cost

In economics, marginal cost is the rate of change (derivative) of the total cost with respect to
the quantity produced, [Stoft, 2002, page 66]. In the context of hydrothermal power systems,
total cost is taken as the total fuel cost of thermal plants plus penalties for constraint
violations over the whole planning horizon. The produced quantity is electrical energy.
Therefore, increasing or reducing energy demand by one unit would result in a different
total cost. The difference in total cost can be approximated by the marginal cost multiplied
by the difference in demand, if demand variation is small enough.

Most of the time the notion of marginal cost is well defined, but there are some cases
where it is not. The marginal cost is not well defined for a given demand if the total cost
function is non-differentiable at that demand, e.g., when the cost to produce an extra unit
is distinctly greater than the savings from producing one unit less, see figure 1.

From left-side of Figure 1, taken from Stoft [2002], we note a total cost curve which
has a kink at 10.000 MWh. This kink indicates that the cheapest thermal unit achieves its
maximum capacity at 10.000 MWh. Then, a more expensive thermal unit must be committed
to meet an additional load requirement. From right-side of figure 1, we observe a marginal
cost curve which is piecewise constant and has a jump at 10.000 MWh. When the demand
is less than 10.000 MWh the marginal cost is $20/MWh and if the demand is greater than
10.000 MWh the marginal cost is $40/MWh. However, if the demand is 10.000 MWh the
marginal cost is not well defined, since the cost to produce an extra unit is $40/MWh and the
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saving from producing one less is $20/MWh, i.e., the total cost function is non-differentiable
at a demand of 10.000 MWh. This is also visible by the kink in the total cost curve at 10.000
MWh.

Marginal cost definition can be extended to non-differentiable points using the notion of
right-hand and left-hand marginal cost. The right-hand marginal cost is defined as the cost
to produce an extra unit (right derivative) and the left-hand marginal cost is defined as the
saving from producing one less unit (left derivative). Hence, when the typical marginal cost
is not well defined, we still may have a notion of marginal cost if the demand is increasing
or decreasing.

Fortunately, the points where the typical notion of marginal cost is ill-defined are quite
rare (Lebesgue measure zero). So, it is very unlikely that any observed demand have this
problem and for all practical purpose the definition of marginal cost as a derivative with
respect to demand is enough.

2.1 Deterministic case

Let us start with the following mathematical setting. Consider the optimization problem

Min
x∈Rn

f(x)

s.t. Ax+ b ≤ 0,
(1)

where f : Rn → R is a convex function, A is an m× n matrix and b is an m× 1 vector. We
denote by ϑ(b) the optimal value of problem (1) considered as a function of b ∈ Rm.

We are interested in sensitivity of the optimal value ϑ(b) of (1) with respect to small
changes of the right hand side vector b as illustrated in Figure 1 for the deterministic planning
problem, where b plays the role of demand. If ϑ(·) is differentiable at a point b ∈ Rm, then
for small values of h = (h1, ..., hm) we can approximate the difference ϑ(b + h) − ϑ(b) by

Figure 1: Total and marginal cost graphics
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hT∇ϑ(b), where ∇ϑ(b) is the m×1 gradient vector whose components are partial derivatives

∂ϑ(b)/∂bi and hT∇ϑ(b) =
∑m

i=1 hi
∂ϑ(b)
∂bi

. More accurately this can be written as

ϑ(b+ h)− ϑ(b) = hT∇ϑ(b) + o(‖b′ − b‖). (2)

The remainder term o(‖b′ − b‖) is small compared with ‖b′ − b‖, i.e., o(‖b′−b‖)
|b′−b‖ tends to 0 as

b′ → b.

Let us discuss some basic properties of function ϑ(·). Since the objective function f(·)
is convex, it follows that the optimal value function ϑ(·) is convex. Indeed consider the
following extended real valued function

ψ(x, b) =

{
f(x), if Ax+ b ≤ 0
+∞, otherwise.

Then for given b, problem (1) is equivalent to minimization of ψ(x, b) over x ∈ Rn, and

ϑ(b) = inf
x∈Rn

ψ(x, b).

Since f(x) is convex it follows that function ψ(x, b) is convex jointly in x and b. Consequently
the min-function ϑ(·) is convex.

It is said that problem (1) is polyhedral if function f(·) is piecewise linear, i.e., can be
represented as maximum of a finite family of affine functions

f(x) = max{αT
i x+ βi : i = 1, ..., k}

for some αi ∈ Rn, βi ∈ R, i = 1, ..., k. In that case function ϑ(·) is also piecewise linear.
The (Lagrangian) dual of problem (1) is the problem

Max
λ∈Rm

+

{
φ(λ) = inf

x∈Rn
L(x, λ))

}
, (3)

where Rm
+ = {y ∈ Rm : y ≥ 0} and

L(x, λ) = f(x) + λT(Ax+ b) (4)

is the respective Lagrangian. Under mild regularity conditions there is no duality gap be-
tween problems (1) and (3), i.e., their optimal values are equal to each other. In particular
if problem (1) is polyhedral, then it can be written as a linear programming problem and
the no duality gap property holds automatically unless both the primal and dual problems
are infeasible.

Recall that g ∈ Rn is said to be a subgradient of convex function ϑ(·) at point b ∈ Rm if

ϑ(b′) ≥ ϑ(b) + gT(b′ − b)

2.1 Deterministic case Version 1.0
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for all b′ ∈ Rm. The set of all subgradients of ϑ(·) at b is called the subdifferential and
denoted ∂ϑ(b). Convex function ϑ(·) is differentiable at b iff its subdifferential ∂ϑ(b) = {g}
is a singleton, in which case its gradient ∇ϑ(b) = g.

Consider an optimal solution x̄ of the primal problem (1). The corresponding first order
optimality conditions are: there is a vector λ ∈ Rm of Lagrange multipliers such that

0 ∈ ∂xL(x̄, λ), (5)

λ ≥ 0, Ax̄+ b ≤ 0, (6)

λT(Ax̄+ b) = 0, (7)

where ∂xL(x̄, λ) = ∂f(x̄) + ATλ. In particular, if f(·) is differentiable at x̄, then condition
(5) takes the form

∇f(x̄) + ATλ = 0. (8)

The set of all Lagrange multipliers, denoted Λ, coincides with the set of optimal solutions
of the dual problem (3) and is the same for any optimal solution of the primal problem.
Note that the set Λ is associated with considered values of matrix A and vector b. Here we
deal with fixed matrix A while vector b could be a subject to small changes. In order to
emphasize dependence of Lagrange multipliers on vector b we sometimes write Λ = Λ(b) as
a function of b.

Provided that ϑ(b) is finite, the subdifferential ∂ϑ(b) is given by the set of optimal so-
lutions of the respective dual problem (3). That is let Λ = Λ(b) be the set of Lagrange
multipliers satisfying conditions (5)–(7), then

∂ϑ(b) = Λ. (9)

It follows that ϑ(·) is differentiable at b iff problem (3) has unique optimal solution (unique
Lagrange multiplier) λ̄, in which case the respective gradient ∇ϑ(b) = λ̄.

Rademacher’s theorem states that if U is an open subset of Rm and φ : U → R is a
Lipschitz continuous function, then φ is differentiable almost everywhere in U ; that is, the
points in U at which φ is not differentiable form a set of Lebesgue measure zero. In particular
this can be applied to the convex function ϑ(·) to conclude that for almost every b the set Λ =
Λ(b) is a singleton, i.e., primal problem (1) possesses unique Lagrange multiplier vector. An
implication of this result is that if we pick up vector b at “random”, then the corresponding
problem (1) possesses unique Lagrange multipliers vector and ϑ(·) is differentiable at b. Yet
this should be taken carefully since if the considered value of b is close to a point where ϑ(·)
is not differentiable, the approximation hT∇ϑ(b) may be not accurate.

2.2 Dynamic setting

In the context of hydrothermal power systems, total cost is taken as the total fuel cost of
thermal plants plus penalties for constraint violations over the whole planning horizon. The
produced quantity is electrical energy and therefore increasing or reducing energy demand

2.2 Dynamic setting Version 1.0
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by one unit would result in a different total cost. The difference in total cost can be approx-
imated by the marginal cost multiplied by the difference in demand, if demand variation is
small enough.

In presence of uncertainty, we must define what we mean by marginal cost. Since the in-
flows are uncertain and our decisions depend on past inflows, the total cost over the planning
horizon is also uncertain (random variable). Let us discuss now dynamic problems starting
with risk neutral case. Consider the following T -stage risk neutral stochastic program (writ-
ten in the nested form)

Min
A1x1=b1
x1≥0

cT1 x1 + E

 min
B2x1+A2x2=b2

x2≥0

cT2 x2 + · · ·+ E
[

min
BT xT−1+AT xT =bT

xT≥0

cTTxT

] . (10)

In the considered case there are two types of balance equations Btxt−1 + Atxt = bt.
Namely, energy conservation equations

SEt,n = SEt−1,n + CEt,n −GHt,n − SPt,n, (11)

relating the stored energy (SE) at the stage t to the stored energy at stage t − 1 plus
controllable energy inflow (CE) minus total hydro generated energy (GH) and losses (SP )
due to spillage, evaporation, etc. And the energy balance equations

GHt,n +
∑
j∈NTn

GTt,j +NFt,n = Lt,n (12)

for satisfying load (demand) (L) at stage t, where (GT ) denotes the thermal generation.
Constraints Btxt−1 + Atxt = bt are obtained writing

xt = (SE,GH,GT, SP,NF )Tt , bt = (CE,L)Tt , ct = (0, 0, CT, 0, 0)Tt , (13)

At =

(
I I 0 I 0
0 I ∆ 0 I

)
, Bt =

(
−I 0 0 0 0
0 0 0 0 0

)
, (14)

where ∆ = {δn,j = 1 for all j ∈ NTn and zero else}, I and 0 are identity and null matrices,
respectively, of appropriate dimensions and the components of CT are the unit operation
cost of each thermal plant and penalty for failure in load supply. Note that hydroelectric
generation costs are assumed to be zero. Physical constraints on variables like limits on the
capacity of the equivalent reservoir, hydro and thermal generation, transmission capacity
and so on are taken into account with constraints on xt.

The inflows process CEt is random while the load process Lt is supposed to be known
(deterministic). In this model only the right hand sides bt are random. In case the inflows
process CEt is stagewise independent, equations (13)–(14) represent constraints of the cor-
responding stochastic program. However, CEt is modeled as an autoregressive time series
process. In that modeling of across time dependence, variables CEt become state variables,

2.2 Dynamic setting Version 1.0
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i.e. are components of vectors xt, and the underline random process becomes the error pro-
cess of the autoregressive model which is assumed to be stagewise independent. Note that
unlike inflows equations (11), the balance equations (12) for the demand at stage t do not
involve state variables at stage t− 1.

The corresponding dynamic equations can be written going backwards in time. Because
of stagewise independence of the random process b1, ..., bT , the cost-to-go (value) function at
stage t = T, ..., 2 is

Qt(xt−1, bt) = inf
Btxt−1+Atxt=bt

xt≥0

cTt xt +Qt+1(xt), (15)

where1

Qt+1(xt) = E[Qt+1(xt, bt+1)] (16)

and with the term QT+1(·), at stage t = T , omitted. At first stage the problem

Min
A1x1=b1

x1≥0

cT1 x1 +Q2(x1) (17)

should be solved with Q2(x1) = E[Q2(x1, b2)].
The cost-to-go functions define an optimal policy x̄1, ..., x̄T for problem (10), with x̄1 being

an optimal solution of the first stage problem (17) and x̄t, t = 2, ..., T , being a minimizer of
the right hand side of (15), that is

x̄t ∈ arg min
Btx̄t−1+Atxt=bt

xt≥0

cTt xt +Qt+1(xt). (18)

Note that for t = 2, ..., T , the minimizer x̄t = x̄t(x̄t−1, bt) is a function of x̄t−1 and bt. Note
also that the optimal value of the first stage problem (17) is equal to the optimal value of

problem (10) and represents the optimal expected total cost E
[∑T

t=1 c
T
t x̄t

]
of the considered

T -stage problem.
Consider the second stage problem

Min
B2x1+A2x2=b2

x1≥0

cT2 x2 +Q3(x2), (19)

where Q3(x2) = E[Q3(x2, b3)]. The optimal value of problem (19) represents the optimal

expected total cost E
[∑T

t=2 c
T
t x̄t

]
conditional on x1 = x̄1 and b2. That is, this optimal value

is given by the conditional expectation and as such is a function of b2 (and x1). Suppose that
the first stage decision vector x1 is given (fixed). We can view x1 as representing the initial
conditions. Now problem (19) depends on realization of random vector b2, and because of
the energy balance equations (12) at t = 2, it also depends on demand (load) vector d = L2.
Let us denote by ϑ(b2, d) the optimal value of problem (19). Note that change of the demand
at the second stage can produce changes in the cost-to-go function Q2, but it will not effect

1The expectation is taken with respect to the distribution of bt+1.
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cost-to-go functions Qt for t = 3, ..., T . This is because the cost-to-go functions are computed
backwards in time.

A natural question is how ϑ(b2, d) is related to Q2(x1, b2). By the definition of the
function Q2(x1, b2) (see equation (15)), for the given value of the demand d = L2 we have
that ϑ(b2, d) = Q2(x1, b2). We are going to consider now sensitivity of the optimal value
ϑ(b2, d) for small changes of the demand levels at the second stage.

2.2.1 The usual approach

The function ϑ(b2, d) is convex. The subdifferential of ϑ(b2, d), with respect to d, is given by
the set of Lagrange multipliers associated with the energy balance equations (at stage t = 2)
with the minus sign. That is, let λ̄(b2, d) be a respective vector of Lagrange multipliers.
Assuming that this vector of Lagrange multipliers is unique, we have that the gradient of
ϑ(b2, d) with respect2 to d is

∇dϑ(b2, d) = −λ̄(b2, d). (20)

We can give the following interpretation of the Lagrange multipliers vector λ̄(b2, d).

Provided that the Lagrange multipliers vector λ̄(b2, d) is unique, we have that −λ̄(b2, d)

represents the gradient of changes of the expected total cost E
[∑T

t=2 c
T
t x̄t

]
, conditional

on x1 = x̄1 and b2, with respect to small variations of the demand vector at the second
stage of the process.

By computing the expectation E[−λ̄(b2, d)] we evaluate the gradient of the respective ex-
pected value of the total cost.

In the above framework consider now the following risk averse case. For risk measure

ρt(·) := (1− λ)E(·) + λAV@Rα(·), (21)

consider problem

Min
A1x1=b1
x1≥0

cT1 x1 + ρ2

 min
B2x1+A2x2=b2

x2≥0

cT2 x2 + · · ·+ ρT

[
min

BT xT−1+AT xT =bT
xT≥0

cTTxT

] . (22)

Of course for λ = 0, problem (22) coincides with the risk neutral problem (10).
The corresponding dynamic equations can be written as follows. The cost-to-go (value)

function at stage t = T, ..., 2 is

Qt(xt−1, bt) := inf
Btxt−1+Atxt=bt

xt≥0

cTt xt +Qt+1(xt), (23)

2Note that here we take Lagrange multiplier in (20) with minus sign since feasibility equations Btxt−1 +
Atxt − bt = 0 are written with minus sign in bt.

2.2 Dynamic setting Version 1.0
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where
Qt+1(xt) = ρt+1[Qt+1(xt, bt+1)] (24)

and with the term ρT+1(·), at stage t = T , omitted. At first stage the problem

Min
A1x1=b1

x1≥0

cT1 x1 +Q2(x1) (25)

should be solved, where Q2(x1) = ρ2[Q2(x1, b2)].
Consider the second stage problem

Min
B2x1+A2x2=b2

x1≥0

cT2 x2 +Q3(x2), (26)

where Q3(x2) = ρ3[Q3(x2, b3)]. The difference between this risk averse formulation and the
above risk neutral setting is that here the optimal value of the first stage problem (25)
represents the optimal value of problem (22). Similarly the optimal value of problem (26) is
equal to the optimal value of the risk averse problem

Min
B2x1+A2x2=b2

x2≥0

cT2 x2 + ρ3

 min
B3x2+A3x3=b3

x3≥0

cT3 x3 + · · ·+ ρT

[
min

BT xT−1+AT xT =bT
xT≥0

cTTxT

] , (27)

conditional on x1 and b2.
Consider the respective vector of Lagrange multipliers λ̄(b2, d) associated with the energy

balance equation. This vector is defined in the same way as in the risk neutral case with the
cost-to-go function Q3(·) derived by the dynamic equations (23). Here it has the following
interpretation.

Provided that the Lagrange multipliers vector λ̄(b2, d) is unique, we have that −λ̄(b2, d)
represents the gradient of changes of the optimal value of the risk averse problem (27),
conditional on x1 = x̄1 and b2, with respect to small variations of the demand vector
at the second stage of the process.

Note that the optimal value of risk averse problem (27) involves penalties for extreme costs
imposed by the AV@R part of the risk measures. It does not make much sense here to average
λ̄(b2, d), i.e., to compute E[λ̄(b2, d)], over the distribution of b2. It does not make sense not
only due to interpretation of the economic meaning of the penalties, but also because of the
nested nature of the mean-AV@R objective function.

3 Volatility

Volatility is a synonym for unpredictability. A judicious description of unpredictability
requires the definition of prediction. Prediction is a guess about a future random quantity.

3 Volatility Version 1.0
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The typical guess is the (conditional) expectation of the quantity which is a predictor with
the property of minimum mean squared error:

X̂t = E[Xt | Xt−1, Xt−2, . . . ].

On these terms, volatility can be seen as a dispersion of all possible future outcomes around
a prediction conditional on the available information X[t−1] := (Xt−1, Xt−2, . . . ):

Volatilityt := dispersion[(Xt − X̂t) | X[t−1]]. (28)

One typical measure of dispersion that is also related to the conditional expectation is
the conditional standard deviation. By definition, (conditional) standard deviation is the
square root of the (conditional) mean squared error between all possible random outcomes
and the prediction given by the expected value:

Volatilityt = E[(Xt − X̂t)
2 | X[t−1]]

1/2 = Var[Xt | X[t−1]]
1/2. (29)

In these terms, a random quantity is more volatile if the conditional mean squared error of
prediction, that is the conditional standard deviation, is bigger.

3.1 Volatility of AR(p) and ARCH(p) models

In order to illustrate the volatility concept, we present below two time-series models. The
first one is an autoregressive AR(p) model:

Xt = φ0 + φ1Xt−1 + · · ·+ φpXt−p + σεt, (30)

where εt is an iid process with εt having standard normal distribution, εt ∼ N (0, 1), and
σ > 0 is a fixed constant. By definition, the volatility of the random outcome Xt at time
t− 1 is the conditional standard deviation of Xt given the available information X[t−1].

Var[Xt | X[t−1]]
1/2 = Var[φ0 + φ1Xt−1 + · · ·+ φpXt−p + σεt | X[t−1]]

1/2

= Var[σεt | X[t−1]]
1/2

= σ,

in other words, the volatility of an AR(p) model is constant and equal to σ. It is instructive
to emphasize that the standard deviation (without conditional on past observation) of an
AR(p) model is not equal to σ. Consider, for instance, an AR(1) model:

Xt = φ0 + φ1Xt−1 + σεt,

with |φ1| < 1. For this model, the variance of Xt has the following expression:

Var[Xt] = Var[φ0 + φ1Xt−1 + σεt]

= φ2
1 Var[Xt−1] + σ2 Var[εt] + 2φ1σCov[Xt−1, εt]. (31)

3.1 Volatility of AR(p) and ARCH(p) models Version 1.0
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Under week stationarity condition (guaranteed by |φ1| < 1), we have that

Cov[Xt−1, εt] = 0, Var[Xt] = Var[Xt−1].

We conclude from (31) the standard deviation formula:

Var[Xt]
1/2 =

σ√
1− φ2

1

,

which is not equal to Var[Xt | X[t−1]]
1/2 = σ.

The second model is the ARCH(p) (Autoregressive Conditional Heteroscedasticity) pro-
cess (of order p). In this case, the random outcome Xt is defined by

Xt = σtZt,

where Zt is an iid process with Zt having standard normal distribution, Zt ∼ N (0, 1), and
σt is a function of Xt−1, . . . , Xt−p of the form

σ2
t = α0 + α1X

2
t−1 + · · ·+ αpX

2
t−p. (32)

For this model, conditional expectation is zero:

E[Xt | X[t−1]] = E[σtZt | X[t−1]] = σtE[Zt | X[t−1]] = 0,

and conditional standard deviation is σt:

Var[Xt | X[t−1]] = E[X2
t | X[t−1]] = σ2

tE[Z2
t | X[t−1]] = σ2

t .

Thus, volatility of an ARCH model is not constant and depends on the last p observations:

Var[Xt | X[t−1]]
1/2 =

√
α0 + α1X2

t−1 + · · ·+ αpX2
t−p.

In summary, volatility and time-series model are closely related concepts, since definition
of volatility requires the notion of conditional distribution, which in turn depends on the
model specification. An usual volatility measure is the conditional standard deviation. We
emphasize that the standard deviation itself and the conditional standard deviation are two
different concepts, as illustrated in the AR(1) example.

3.2 Volatility of marginal cost

We have two main approaches to assess the marginal cost volatility:

1. Fit a time-series model on the historical data of marginal cost, an ARCH model for
instance, and estimate the conditional standard deviation;

3.2 Volatility of marginal cost Version 1.0
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2. Fit a model for the initial condition variables, simulate several input for the stochastic
optimization model and estimate the conditional standard deviation of marginal cost
by Monte Carlo;

In the Brazilian power system, marginal cost is obtained by a rolling horizon approach,
i.e., on every stage the stochastic programming problem is solved from scratch with revised
parameters. The typical procedure used to assess the marginal cost volatility is by fitting a
model for initial condition variables (alternative 2) and simulating possible values of marginal
cost. Intuitively, this seems a better approach as compared to alternative 1.

In this way, we highlight some parameters of the stochastic programming problem that
could have a significant impact on the marginal cost value using the second approach. We
assume, without loss of generality, that we are at time zero (t = 0) trying to predict marginal
cost π1 of time one (t = 1):

• v1 – initial stored volume (measured) at the beginning of time 1;

• â[1,s] – deterministic inflow scenario forecast, where s is the number of considered stages.
A typical value of s is 4 (weeks);

• ã[s+1,T ] – inflow scenarios generated by the PAR (Periodic Autoregressive model) con-
ditioned on past observation a[0] and deterministic forecast â[1,s]. A typical value of T
is 5;

• QT+1 – mean-AV@R cost-to-go function computed by the Long-term planning model
(problem boundary condition);

• C[1,T ] – unit costs (deterministic) for thermal generation and deficit (load shedding),
and penalties for slack variables from time 1 up to the end of horizon T .

In short, marginal cost π1 is a function of the above mentioned parameters:

π1 = π1

(
v1, â[1,s], ã[s+1,T ], QT+1, C[1,T ]

)
. (33)

Suppose we have a statistical model for evolution of the initial storage v1, the inflow
forecasts â[1,s] and the inflow scenarios ã[s+1,T ]. For instance, we may fit a time-series model,
such as the PAR model, for both â[1,s] and ã[s+1,T ] and we could define the initial storage
v1 as the optimal solution of the final storage from the previous rolling horizon problem.
The PAR model depends on the observed inflows a[0] up to time zero and initial storage v1

depends on the previous initial storage v0, inflow forecast âPrev
[1,s] and inflow scenarios ãPrev

[s+1,T ].
Suppose also that we ignore eventual variability in estimation of the mean-AV@R cost-

to-go function QT+1 and changes on the unit costs C[1,T ]. Therefore,

π1 = π1

(
v1, â[1,s], ã[s+1,T ]

)
. (34)

3.2 Volatility of marginal cost Version 1.0
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From time zero viewpoint, the volatility of marginal cost is the conditional standard deviation
of marginal cost given the initial storage v0 at time zero, the observed inflow a[0] up to time
zero, the previous value of inflow forecast âPrev

[1,s] and inflow scenarios ãPrev
[s+1,T ]:

Var
[
π1(v1, â[1,s], ã[s+1,T ]) | (v0, a[0], â

Prev
[1,s] , ã

Prev
[s+1,T ])

]1/2
. (35)

We can estimate quantity (35) by Monte Carlo, if we simulate (v1, â[1,s], ã[s+1,T ]) conditional
on (v0, a[0], â

Prev
[1,s] , ã

Prev
[s+1,T ]) and compute π1(v1, â[1,s], ã[s+1,T ]).

4 Marginal cost smoothing

One problem with the current approach is that there are situations where small variations
on the initial inflows result in considerable changes on marginal costs value when compared
to the same variation on initial storage.

We present below a discussion about the derivative of the first stage Cost-to-go function
Q(v1, a0) with respect to the initial inflow a0 and storage volume v1. This may give us a clue
on the marginal cost sensitivity regarding those variables. Suppose we have a risk neutral
multi-stage planning model with just one thermal and one hydro plant, where the inflow
model is an AR(1) process. Just to simplify notation, let φ0 = 0 and φ1 = ρ. Then,

Q(v1, a0) := min E [ c1g1 + c2g2 + c3g3 ]

s.t. v2 = v1 + a1 − q1 − s1

a1 = ρa0 + ε1

v3 = v2 + a2 − q2 − s2

a2 = ρa1 + ε2

v4 = v3 + a3 − q3 − s3

a3 = ρa2 + ε3

. (36)

The only uncertainty is the additive error εt, which is assumed to be stagewise independent.
We restate problem (36) in a suitable form to compare derivatives. Formulation below is
obtained by replacing recursively the time series expression, at = ρat−1 + εt, in each hydro
balance equation:

Q(v1, a0) = min E [ c1g1 + c2g2 + c3g3 ]

s.t. v2 = v1 − q1 + (ρa0 + ε1)

v3 = v1 − q1 − q2 + (ρa0 + ε1) + (ρ2a0 + ρε1 + ε2)

v4 = v1 −
∑3

t=1 qt +
∑3

t=1(ρta0 +
∑t

j=1 ρ
t−jεj)

(37)

Based on (37), we define a Cost-to-go function U(b1, b2, b3) as a similar planning problem,
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but with decoupled recourse on each stage:

U(b1, b2, b3) := min E [ c1g1 + c2g2 + c3g3 ]

s.t. v2 = b1 − q1 + ε1

v3 = b2 − q1 − q2 + ε1 + ρε1 + ε2

v4 = b3 −
∑3

t=1 qt +
∑3

t=1

∑t
j=1 ρ

t−jεj

. (38)

Note that the relation between both Cost-to-go functions is given by

Q(v1, a0) = U(v1 + ρa0, v1 + (ρ+ ρ2)a0, v1 +
∑3

t=1 ρ
ta0). (39)

Assuming differentiability of U at the given condition, we may use the chain rule to conclude
the relation between ∂Q

∂v1
and ∂Q

∂a0
:

∂Q

∂v1

=
∂U

∂b1

+
∂U

∂b2

+
∂U

∂b3

∂Q

∂a0

= ρ
∂U

∂b1

+ (ρ+ ρ2)
∂U

∂b2

+ (ρ+ ρ2 + ρ3)
∂U

∂b3

,

or more concisely,

∂Q

∂a0

= ρ
∂Q

∂v1

+ ρ2 ∂U

∂b2

+ (ρ2 + ρ3)
∂U

∂b3

.

Although the relation among ∂U
∂b1

, ∂U
∂b2

and ∂U
∂b3

is not obvious, we suspect that the last two

terms ρ2 ∂U
∂b2

+ (ρ2 + ρ3) ∂U
∂b3

may explain the stronger marginal cost sensitivity with respect to
the past inflows when compared to the initial stored volume.

This behavior is often perceived as not intuitive and methodologies have been proposed
to control marginal cost variability induced by initial inflow changes. Many aspects regard-
ing the relative importance of the inflow models have already been discussed in previous
investigations. One such work that deserves mentioning is [Soares et al., 2014] approach
that proposes to decouple the forward and backward steps of the SDDP algorithm. The
driving idea of Soares et al. is to reduce the decisions and marginal costs variability induced
by the use of PAR(p) models by using a stagewise independent inflow model.

On the other hand, the SDDP iterative algorithm convergence criterion is based on
stability evaluation of some measure, say the mean-AV@R risk measure, regarding the total
cost along the planning horizon. For instance, one stops the algorithm when the lower bound
of the total cost measure does not change significantly along iterations. This criterion aims at
the stability of the cost and does not provide any analogous provision regarding the stability
of marginal costs.

One possible attempt to reduce variability is to consider a larger number of SDDP itera-
tions. Another one is to increase the size of the scenario tree. Nevertheless, due to the high
dimension of the cost-to-go function, one can not assure that any of these approaches would
result in a significant reduction, Pereira [2008].
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The aforementioned investigations have focused on the state variables. Instead, we in-
vestigated the possible effects on marginal cost variability due to the convergence criteria as
well as the discretization used to represent the scenario tree.

In this report, we proposed two alternative approaches to deal with the possible effects
of the algorithm on the solution variability.

• The first alternative addresses the possible occurrence of multiple solutions, or highly
similar ones, with approximately equal total cost. This can lead to a variation of the
decisions variables as well as of the corresponding marginal costs. The approach is to
add a quadratic regularization term to the value function:

Qt (xt−1, ξt) = inf
xt∈Rnt

{
cTt xt +Qt+1(xt) + 1

2εt‖xt − x̄t‖
2 : Btxt−1 + Atxt = bt, xt ≥ 0

}
,

which has the additional benefit of providing a unique solution to the problem.

• The second alternative addresses the stability of the marginal cost regarding small
perturbations on the demand. The aim is to investigate whether regularizing the Cost-
to-go function with respect to the demand could help stabilize the marginal cost.

Qreg
t (xt−1, ξt) = inf

yt−1∈Rnt−1

{
Qt (yt−1, ξt) +

1

2γt
‖yt−1 − xt−1‖2

}
.

In the following sections we will consider a specific notation to describe the regularization
approaches. Note that the state variable xt contains the storage volume vt and the demand
dt, and so we can write xt−1 = (vt, dt, x̃t−1). For brevity, we omit x̃t−1 in the following
equations. We use a particular description of the problem

Qt (vt, dt) = inf
vt+1≥0

{
ICt(vt+1, vt, dt) +Qt+1(vt+1, dt+1)

}
, (40)

in which the thermal costs, hydro and load balance equation, and other box constraints on
thermal, hydro, spill, and net flow variables are summarized on the immediate cost function
ICt(vt+1, vt, dt).

4.1 Objective function quadratic regularization (Tichonov)

One of the problems with the current approach is that in some cases small variations in the
inflows result in considerable changes in the output marginal costs. One possible attempt to
deal with this is to add a quadratic regularization term to the value (cost-to-go) functions.
That is, the dynamic programming equations are modified to

Qt (xt−1, ξt) = inf
xt∈Rnt

{
cTt xt +Qt+1(xt) + 1

2εt‖xt − x̄t‖
2 : Btxt−1 + Atxt = bt, xt ≥ 0

}
, (41)

with Qt+1 (xt) = ρt+1 [Qt+1 (xt, ξt+1)] , and the additional regularization term 1
2εt‖xt‖2, where

‖xt‖2 = xTt xt and εt > 0. Adding such regularization term may stabilize the problem.

4.1 Objective function quadratic regularization (Tichonov) Version 1.0
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Such approach is known as Tichonov regularization. The idea is that the optimal policy
x̄t = x̄t (xt−1, ξt), t = 2, ..., T , is a solution of the respective minimization problem

Min
xt∈Rnt

{
cTt xt +Qt+1(xt) : Btxt−1 + Atxt = bt, xt ≥ 0

}
. (42)

If the cost-to-go function Qt+1 (xt) is “flat”, then this optimal solution can be unstable.
Adding the quadratic term 1

2εt‖xt‖2 makes the objective function of problem (42) better
conditioned, and hence x̄t = x̄t (xt−1, ξt) less sensitive to small changes of ξt.

As far as the SDDP method is concerned, this requires only to add the term

∇
(

1
2εt‖x

k
t ‖2
)

= εtx
k
t

to the gradient of the value function at the backward step of the algorithm at trial points
xkt .

4.1.1 Regularization with respect to the storage

Using the particular notation (40) described earlier, one can also write equation (41) in the
following way:

Qt (vt, dt) = inf
vt+1≥0

{
ICt(vt+1, vt, dt) +Qt+1(vt+1, dt+1) + 1

2εt‖vt+1 − v̄t+1‖2
}
, (43)

which emphasizes that the quadratic regularization center is the stored volume v̄t+1.

4.2 Optimal value quadratic regularization (Moreau-Yosida)

Let f : Rn → R be a proper, lower semi-continuous and convex function. We define as the
Moreau-Yosida envelope eγf(x) and proximal mapping Pγf(x) (set of optimal solutions) the
following functions:

eγf(x) := inf
w

{
f(w) +

1

2γ
‖w − x‖2

}
, (44)

Pγf(x) := arg min
w

{
f(w) +

1

2γ
‖w − x‖2

}
. (45)

The regularized function eγf(x) is also called the infimal convolution between f(x) and
1

2γ
‖x‖2. Below we summarize some properties of eγf(x) and Pγf(x).

Consider the particular case where f : Rn → R be a lower semi-continuous, proper, and
convex function. For this specific condition, a result from the book of [Rockafellar and Wets,
2011] regarding Moreau-Yosida envelope eγf and proximal mappings Pγf states that:

1. the value eγf(x) is finite and depends continuously on (γ, x), with

eγf(x)↗ f(x) for all x as γ ↘ 0.

4.2 Optimal value quadratic regularization (Moreau-Yosida) Version 1.0
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2. The proximal mapping Pγf is single-valued (unique optimal solution) and continuous.
In fact Pγf(x)→ Pγ̄f(x̄) whenever (γ, x)→ (γ̄, x̄) with γ̄ > 0.

3. The envelope function eγf is convex and continuously differentiable, the gradient being

∇eγf(x) =
1

γ
[x− Pγ(x)].

Note that the above results are valid for the hydrothermal planning problem at hand. These
properties motivate the use of Moreau-Yosida regularization on Cost-to-go functions.

4.2.1 Example: absolute value function

Let f : R → R be the absolute value function, f(x) = |x|. One can prove the following
formulas:

eγf(x) =


−x− γ

2
x < −γ

x2

2γ
x ∈ [−γ, γ]

x− γ
2

x > γ

Pγf(x) =


−x+ γ x < −γ
0 x ∈ [−γ, γ]

x− γ x > γ

Figure 2: For γ = 1, Absolute value function f(x) = |x| (blue), Moreau-Yosida envelope
eγf(x) (red) and proximal mapping Pγf(x) (green).

Figure 3 illustrates the behavior of Moreau-Yosida envolope for γ ∈ (0, 1]:

4.2 Optimal value quadratic regularization (Moreau-Yosida) Version 1.0
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Figure 3: Absolute value Moreau-Yosida envolope eγf(x) for γ ∈ (0, 1].

4.2.2 Cost-to-go function regularization with respect to the demand

Consider the Moreau-Yosida regularization of the Cost-to-go function with respect to the
demand:

Qreg
t (vt, dt) = inf

d̃t∈Rmt

{
Qt(vt, d̃t) +

1

2γt
‖d̃t − dt‖2

}
. (46)

The following steps show how to frame this regularization as a Moreau-Yosida regular-
ization of the Immediate cost.

Qreg
t (vt, dt) = inf

d̃t∈Rmt

{
Qt(vt, d̃t) +

1

2γt
‖d̃t − dt‖2

}
= inf

d̃t∈Rmt

vt+1≥0

{
ICt(vt+1, vt, dt) +Qt+1(vt+1, dt+1) +

1

2γt
‖d̃t − dt‖2

}

= inf
vt+1≥0

{
inf

d̃t∈Rmt

{
ICt(vt+1, vt, dt) +

1

2γt
‖d̃t − dt‖2

}
+Qt+1(vt+1, dt+1)

}
= inf

vt+1≥0
{ICreg

t (vt+1, vt, dt) +Qt+1(vt+1, dt+1)} ,

Note that, as far as the regularization with respect to the demand, the above reasoning shows
the equivalence between the Cost-to-go function regularization and solving the standard
problem with a regularized Immediate Cost.

How to solve this problem under the SDDP algorithm:

• Regularize after the last iteration (final simulation). Use a quadratic solver;

• Regularize along the iterations, that is, similar to the Tichonov approach replacing
vt+1 by d̃t. Can use linear solver.

4.2 Optimal value quadratic regularization (Moreau-Yosida) Version 1.0
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5 Case-study

5.1 System general data

The numerical experiments described in this report were carried out considering instances of
multi-stage linear stochastic problems based on an aggregate representation of the Brazilian
Interconnected Power System long-term operation planning problem, as of January 2015.
This system can be represented by a graph with four generation nodes – comprising sub-
systems Southeast (SE), South (S), Northeast (NE) and North (N) – and one (Imperatriz,
IM) transshipment node (see Figure 4).

Figure 4: Aggregate representation of the Brazilian interconnected power system

The load of each area must be supplied by local hydro and thermal plants or by power
flows among the interconnected areas. A slack thermal generator of high cost that increases
with the amount of load curtailment accounts for load shortage at each area (Table 1).
Interconnection limits between areas may differ depending on the flow direction, see Table 2.
The energy balance equation for each sub-system has to be satisfied for each stage and
scenario. There are bounds on stored and generated energy for each sub-system aggregate
reservoir and on thermal generations.

% of total
Cost

load curtailment
P1 0 – 5 1420.34
P2 5 – 10 3064.15
P3 10 – 20 6403.81
P4 20 – 100 7276.40

Table 1: Deficit costs and depths ($/MWh)

The long-term planning horizon for the Brazilian case comprises 60 months, due to the
existence of multi-year regulation capacity of some large reservoirs. In order to obtain a
reasonable cost-to-go function that represents the continuity of the energy supply after these
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to
SE S NE N IM

from

SE – 7500 1000 0 4000
S 5470 – 0 0 0

NE 600 0 – 0 3500
N 0 0 0 – ∞
IM 2940 0 3300 4407 –

Table 2: Interconnection limits between systems (MWave)

firsts 60 stages, a common practice is to add 60 more stages to the problem and consider a
zero cost-to-go function at the end of the 120th stage.

A scenario tree consisting of 1 × N2 × N3 × · · · × N120 scenarios, for 120 stages, was
constructed based on sampling of a periodic autoregressive multivariate statistical (PMAR)
model with multiplicative error for the energy inflow record. In this (seasonal) model, the
empirical distribution for each month and for every system is used to represent the corre-
sponding noise distribution. The scenario tree is generated by sampling from these empirical
distributions. The input data for this statistical model is based on 80 observations of the
natural energy inflow (from year 1931 to 2010) for each of the considered 4 systems.

The study case general data, such as hydro and thermal plants data and interconnections
capacities, were taken as static values throughout the planning horizon (120 months). The
monthly seasonality of the demand is taken into account, that is, the energy inflows may
vary along the stages but the annual value is constant. The total operation cost is the sum
of thermal generating costs plus a penalty term that reflects energy shortage.

The objective function of the planning problem is to minimize the convex combination
of the expectation and Average Value-at-Risk costs along the 120 months of the planning
horizon, while supplying the subsystems load and obeying technical constraints.

5.2 Case study for objective function regularization

Alternative 1 consists in adding a quadratic regularization term to the objective function.
This approach results in a unique solution for the stored volume and could stabilize the
marginal cost. In order to evaluate the performance of this approach, a numerical experiment
was performed.

For these experiments we have considered that:

• the regularization centers (see equation (43)) for each of the subsystems correspond to
the monthly average values for the third year of the planning period obtained with a
mean-AV@R policy;

• the observed past energy inflows before January 2010 and 2015 are representative for
wet and dry hydrological years to condition the generation of the scenario tree;
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• the objective function consists of the minimization of both the risk neutral and the
mean-AV@R approaches, with and without the quadratic regularization term.

• constant values for quadratic penalty εt are equal to 0.0 (no regularization), 0.001,
0.01, 0.1, and 1.

Figure 5
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Figure 6

Figure 7
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Figure 8
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Figure 9

Figure 10
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Figure 11

Figure 12
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Figure 13

The main purpose of these experiments is to evaluate the additional effect of imposing the
regularization on storage over the conditional marginal cost standard deviation (volatility);

Tables 3 and 4 summarizes the results for the mean marginal costs values of February
considering 3000 out-of-sample scenarios for both risk neutral and risk averse measures.

Tables 5 and 7 summarizes the results for the volatility of February for both risk neutral
and risk averse measures.

One can note that BLABLA
One can note that BLABLA
One can note that BLABLA One can note that BLABLA

Hydro Initial February Marginal Cost mean
Trend Month quadratic penalty ε

0.0 0.001 0.01 0.1 1.00
dry Jan/2015 2758.799 3223.820 5756.808 6688.187 7211.531

average Jan/2009 1545.376 1644.911 1953.679 2005.091 2142.996
wet Jan/2010 339.5925 283.2129 205.8631 288.3215 430.1468

Table 3: Mean marginal cost smoothing using quadratic regularization for Southeast Energy
Storage — Risk Neutral case
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Hydro Initial February Marginal Cost Mean
Trend Month quadratic penalty ε

0.0 0.001 0.01 0.1 1.00
dry Jan/2015 2758.799 3223.820 5713.563 6668.433 7219.365

average Jan/2009 1546.246 1629.906 1953.679 2024.113 2208.203
wet Jan/2010 336.7697 284.2375 215.4217 278.9300 433.7508

Table 4: Mean marginal cost smoothing using quadratic regularization for Southeast Energy
Storage — Risk Averse case

Hydro Initial February Marginal Cost Volatility
Trend Month quadratic penalty ε

0.0 0.001 0.01 0.1 1.00
dry Jan/2015 593.4140 682.6321 1302.3617 1196.5978 509.6505

average Jan/2009 282.3445 434.4033 925.5148 1584.2764 2206.3415
wet Jan/2010 199.2158 159.7219 136.9821 264.3852 547.9454

Table 5: Volatility smoothing using quadratic regularization for Southeast Energy Storage
— Risk Neutral case

RHO 0 RHO 10-3e RHO 10-2e RHO 10-1e RHO 10-0e
Jan15 593.41 682.63 1302.36 1196.60 509.65
Jan09 282.34 434.40 925.51 1584.28 2206.34
Jan10 199.22 159.72 136.98 264.39 547.95

Table 6: This table is just for conference purposes.

Hydro Initial February Marginal Cost Volatility
Trend Month quadratic penalty ε

0.0 0.001 0.01 0.1 1.00
dry Jan/2015 593.4140 682.6321 1312.6890 1214.1774 447.9946

average Jan/2009 276.9192 427.5261 925.5148 1582.4752 2223.0841
wet Jan/2010 195.7699 150.9643 154.3371 248.5328 494.8537

Table 7: Volatility smoothing using quadratic regularization Southeast Energy Storage —
Risk Averse case

6 Conclusion

This report addressed the marginal cost variability in the solutions of the long-term planning
operation model provided by the use of the SDDP algorithm. Previous studies concerning
the uncertainty representation have already been done and were not dealt with here. Instead,
we considered two alternatives to investigate the possible effects on marginal cost variability
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due to the convergence criteria and the discretization used to represent the scenario tree.
The first alternative proposed consists in adding a quadratic function to the total cost,

so that the resulting convex function have only one optimal solution.
The second alternative considers a quadratic regularization of the immediate cost function

with respect to the demand variation. This can be achieved by adding a regularization term
to the immediate cost function, and in this document the corresponding formulation was
fully described. Future computational studies can be performed to evaluate the performance
of this alternative to smooth the marginal costs due to demand variation.

Additionally, it is also advisable to perform further studies regarding the uncertainty
model formulation.
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A An alternative approach to define Marginal Costs

We may suggest the following alternative way to definition of marginal costs, in both the
risk neutral and risk averse cases. Let x̄t = x̄t(b[t]) be a considered policy, say defined by
computed approximations of the cost-to-go functions. In particular x̄2 = x̄2(b2) is obtained
by solving problem (19) in the risk neutral case and problem (26) in the risk averse case,
for given x1 = x̄1 and an approximation of the cost-to-go function Q3(·). The solution
x̄2 = x̄2(b2, d) of the respective second stage problems can also be considered as a function
of the demand d = L2. The cost cT2 x̄2 at the second stage is a function of b2 and d. Let us
denote this cost by C2(b2, d), i.e.,

C2(b2, d) = cT2 [x̄2(b2, d)]. (47)

For small perturbations of the demand vector, say changing d to d+ h with small values of
vector h, we can compute the corresponding perturbations of the second stage cost

C2(b2, d+ h)− C2(b2, d). (48)

If x̄2(b2, d) is differentiable in d, then partial derivatives ∂C2(b2,d)
∂di

of the second stage cost
can be evaluated by respective finite differences. For a given perturbation of the demands,
by generating a sample of random vector b2, the distribution of such marginal cost can be
evaluated and the expected value can be estimated by the average.

A.1 Numerical experiments, risk averse case

Remark 1 The purpose of this section is to illustrate the use of the above described two
approaches to evaluate the marginal cost: the usual one, use of Lagrangian multipliers, and
the alternative one, the simulation approach.

A.1.1 The usual approach

The cost-to-go functions Qt+1(xt), of the form (24), were approximately evaluated by the
SDDP algorithm and the first stage decision vector x1 = x̄1 was computed by solving the
corresponding first stage problem (25). Consequently M = 3000 samples bj2, j = 1, ...,M ,
of random vector b2 were generated. For each generated vector bj2 and given demand vector
d̄ = L2, the second stage problem of the form (19), with x1 = x̄1 and the approximate
risk averse cost-to-go function Q̂3(x2), was solved. The computed optimal values of these
problems give a sample of M = 3000 realizations of the random variable ϑ(b2, d̄) = Q2(x̄1, b2).

As a comparison between different seasons, we investigated two cases. We set January
and September as the first stage respectively. The corresponding histograms are given below.
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Figure 14: Histogram of the optimal values in two cases

Recall that in the risk neutral case, for given demand d the random variable ϑ(b2, d)
represents the optimal expected total cost conditional on x1 = x̄1 and b2. In the considered
risk averse case an interpretation of ϑ(b2, d) is more involved and was discussed in the previous
section.

Suppose now that the second stage demand is increased (proportionally for each com-
ponent of the demand vector) by the following percentages: 0.1%, 0.2%,...,2%, i.e., the new
demand is

d = 1.001× d̄, d = 1.002× d̄, ..., d = 1.02× d̄, (49)

where d̄ is the nominal (specified) value of the demand vector. Of course this results in the
increase of the optimal value ϑ(b2, d) of the corresponding problem (19). As it was discussed
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in the previous section, we can approximate this increase by using vector λ̄(b2, d̄) of Lagrange
multipliers (with minus sign) for the nominal value d̄ of the demand vector, provided this
vector of Lagrange multipliers is unique. In the graph below are plotted the average (over
the 3000 sample replications of b2) of the increase in ϑ(b2, d), that is M−1

∑M
j=1 ϑ(bj2, d), and

the corresponding linear approximation based on the Lagrange multipliers vector. It can be
seen that these relatively small changes in the demand the linear approximation was very
good. This experiment was performed for the month of January at the first stage.

Figure 15: Sensitivity to demand of the cost-to-go (in blue) and its linear approximation by
Lagrange multipliers (in red) in two cases
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A.1.2 The alternative approach

Consider the alternative approach discussed in section A. For each generated bj2, j =
1, ..., 3000, and the policy defined by the application of the SDDP algorithm, the cost
C2(bj2, d), defined in (47), was computed. The histograms of these costs for the nominal
value of the demand vector are shown below.

Figure 16: Histograms of the second stage costs in two cases

Consider the average changes E[C2(b2, d)− C2(b2, d̄)] of the second stage costs for small
changes of the demand vector, with demand changes specified in (49). This can be estimated
by averaging the corresponding values of the second stage costs. These average changes of
the second stage costs as a function of the respective changes of the demand vector are shown
in the following plot.

Figure 17: Sensitivity to demand of the second stage costs in two cases
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