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SUMMARY

Worldwide, the transportation sector is the second largest contributor to greenhouse gas

emissions (GHG) after the electricity industry, while in the US, it is the largest contributor.

One attractive solution to curb the GHG emission in the public transit segment is the Battery

Electric Bus (BEB). A BEB produces zero tailpipe GHG emissions, its fuel cost is around

40% cheaper than a similar-sized fossil-fuel bus, its noise level is significantly lower, and it

has less maintenance need. However, BEB technology poses new challenges to the bus op-

eration planning and charging placement due to the limited travel range and long charging

hours. The optimal charging infrastructure plan may also vary with the spatial distribution

of the routes.

First, we propose an Optimal Planning of Charging Facilities and Electric Bus Fleet (OPCF-

EBF) model to optimally plan the transition to an entirely electric bus fleet. The OPCF-EBF

model brings together long-term planning investment decisions and short-term operation

assessment, where the latter considers modular arithmetic to model the repeating of daily

24-hour bus demand in each planning year. The proposed OPCF-EBF model is shown to be

NP-hard through reduction from the uncapacitated facility location problem. We propose

an effective and computationally scalable primal heuristic called “Policy-Restriction” that

significantly outperforms and improves Gurobi. We conduct extensive computational stud-

ies using real-world data from public transit systems in major cities in the U.S. and around

the world, which reveal insights into the optimal investment and operational strategies.

Second, we explore another dimension of the OPCF-EBF model with only one bus route

and only depot BEBs, but an arbitrary number of battery states. We call this a fleet-sizing

problem. We show that, under a simple non-preemptive charging strategy with no early

charging and idling, the fleet-sizing problem is polynomially solvable. The proof of this

fact relies on the “almost” total unimodular nature of the constraint matrix for the operation

problem given the number of depot BEBs. We also rely on a proximity result that quantifies

xii



the distance of the optimal solution of a Separable Convex Integer Program and the solu-

tion of its corresponding linear relaxation. We then prove the polynomial-time complexity

based on the number of intermediate auxiliary linear programs necessary to obtain an in-

tegral optimal solution. Inspired by the fleet-sizing problem, we introduce a special class

of polynomially solvable Separable Integer Programs followed by the notion of a Dyad

Contiguous Row (DCR) matrix.

Third, we investigate more deeply the notion of a stationary optimization problem. We

introduce a type of primal and dual for infinite-dimensional stationary linear programs

based on a restriction to `∞ and `1 spaces of appropriate dimensions. We motivate this

approach from the fixed-point formulation of discounted stationary programs and prove

weak duality. We illustrate with a hydro-thermal stationary planning problem that strong

duality may hold for a large class of infinite-dimensional stationary linear programs. In

particular, the value function of the latter is piecewise linear convex with countably many

affine functions. Weak duality may fail if the `∞ and `1 set constraints are removed.

Lastly, we investigate an algebraic method to characterize extreme points of a class of in-

finite dimensional optimization problems called row-finite linear programs. We introduce

the notion of an Asymptotically Compatible (AC) solution to extend the definition of a

basic solution for infinite dimensional linear programs. In fact, a solution to a row-finite

inequality system is extreme if the only AC solution to the system induced by the active lin-

ear constraints is the trivial one. We describe how the Gauss-Jordan elimination algorithm

parameterize all the solutions of row-finite equality system. Our approach is illustrated in

the characterization of extreme circulations over infinite digraphs of finite degree.

xiii



CHAPTER 1

INTRODUCTION

1.1 Background

Scientists are researching decarbonization solutions in every segment of society for the

next challenge regarding human existence: climate change. According to [1], more than

75% of the Greenhouse gas (GHG) emissions in the US come from power production,

industrial activities, and the transportation sector, where the latter is currently the largest

GHC emitter. There are a couple of initiatives in the transportation segment regarding

zero tailpipe emissions. Still, as of now, battery electric vehicles (EVs) offer the best

combination of location convenience to refuel a car and direct consumption of clean energy

from renewable sources [2].

However, EVs pose additional challenges in comparison with fossil fuel vehicles. For

example, the travel range of an EV is considerably lower due to limitations on the current

battery storage [3, 4]. Also, the charging time can be significantly longer, which might

be inconvenient for long-range trips. The success of a transition to entire electric fleets

requires extensive planning, and the best solution depends on the specific application. This

thesis focuses on supporting decision tools for public transportation, explicitly to aid the

transition from conventional bus fleets to battery electric fleets on public transit systems.

Other EV applications, such as private vehicles or freight logistics, are outside the scope of

this work. For a review on EV applications, see [4].

We propose a mixed-integer program for the optimal transition to an entirely electric bus

fleet regarding the practical needs of a public transit agency. Buses have life cycles of 12

years on average, and transit agencies can only retire some of their buses at a time. Our

model considers a yearly planning horizon for charging infrastructure and fleet renewal
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investment with bus retirement targets, charging location, and budget constraints.

We also propose a realistic operation model to assess the fleet operation and costs each

year. The idea is to use the bus schedules informed through the General Transit Feed

Specification (GTFS) file regarding each public transit system to extract information about

the routes and associated bus demand for each hourly time interval. Our operation meets

the bus demand using a mix of electric and conventional bus fleets along the transition.

The operation model also offers insights into our model’s operation peaks and charging

dynamics. It represents a stationary bus schedule for a regular weekday, e.g., Monday. We

assume a 24-hour operation is periodic and repeats throughout the year with the coupling

constraints between the variables of the last and first 24 hours. To this end, our time indexes

are equivalence classes under congruence modulo 24, which has the wrap-around effect

when we perform addition and subtraction operations.

We consider two types of Battery Electric Buses (BEB) that significantly differ in function.

The depot BEBs rely on their large battery capacity to operate and return to the bus depot to

recharge for a few hours. On the other hand, the on-route BEBs can operate with a smaller

battery storage and charge whenever they reach their bus terminal. So, on-route BEBs can

work similarly to conventional buses since they can accommodate their charge into the bus

driver layover time. However, the charger infrastructure and energy costs are much higher

for on-route BEBs than depot BEBs. Therefore, it is often unclear if one approach is better

without proper simulation and optimization.

The computational complexity of our Optimal Planning of Charging Facilities and Electric

Bus Fleets (OPCF-EBF) model is NP-Hard, and its proof is a polynomial-time reduction

from the Uncapacitated Facility Location (UFL) problem. In practice, the OPCF-EBF is

also a numerically challenging problem. Even Gurobi cannot not find a solution with an

average gap smaller than 52% within 4 hours of computation in a cluster with 86 cores.

We proposed a scalable primal heuristic that accelerates the search for an excellent primal

solution, outperforming Gurobi in most real cases.
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Another dimension of our analysis is in terms of the operation model. We investigate

whether the scheduling of the bus charging, operation, and fleet sizing could be another

cause for numerical issues. The high dimensionality of our model is primarily explained

by the different configurations one could schedule the fleet charging.

We investigate the simplest fleet sizing and operation model, which assumes only one route,

unlimited charging capacity, and depot BEBs. In terms of operation, the depot BEBs can

only charge when depleted. Once fully recharged, they have to resume operation imme-

diately. This model is polynomially solvable, but the proof of such a fact is nontrivial.

Indeed, we reformulate our problem as a two-stage model, in which the first stage contains

only the fleet-sizing variables and constraints, while the second stage is the operation given

the fleet size. We prove that the second stage problem is integral, i.e., the linear relaxation

is the convex hull of the integral feasible set, despite the second stage problem’s constraint

matrix not being totally unimodular.

We frame our two-stage integer program as a Separable Convex Integral Program (SCIP).

The novelty of our polynomial-time reduction lies in using a proximity theorem [5] for

SCIPs to limit the search for an optimal integral solution. This analysis only works for

instances where we do not allow either idle buses or early bus charging. For more flexible

operations, the computational complexity remains open. Then, we generalize our model

to a class of two-stage Separable Integral Programs. We introduce the Dyadic Contiguous

Row (DCR) matrix that generalizes the notion of a row circular matrix [6] and contains our

second-stage operation model’s constraint matrix as a particular case. Our polynomial-time

algorithm is based on the proximity theorem for SCIPs can solve this class of mixed-integer

programs as well.

Motivated by the stationary operation of our bus schedules, we also investigate the meaning

of a stationary linear program more deeply. More precisely, we depart from a fixed point

value function perspective and introduce the elements of a stationary infinite-dimensional

linear program. The first challenge is to guarantee convergence of the discounted series that

3



naturally arises in the objective function. One could take several approaches to make the

objective well-defined, such as taking the series’s liminf [7] or assuming a uniform bound

for the decision variables [8, 9]. Indeed, we choose a balance between those two. We

introduce the `∞ set constraint in defining a stationary infinite-dimensional linear program.

Our approach preserves the objective’s linearity property and is less restrictive than the

uniform bounds on the variable space.

Following this analogy, it is surprisingly simple to define a dual program. We apply the

same duality rules as in a finite-dimensional linear program and add the `1 set constraint.

Weak Duality follows from simple algebraic manipulations and Fubini’s theorem for ab-

solutely convergent series. We provide a toy problem inspired by a hydro-thermal power

generation planning problem that supports our primal-dual setting and satisfies Strong Du-

ality. We also observe with an example that by dropping the `∞ and `1 set constraints,

Weak Duality may fail. However, once we enforced those set constraints, the same exam-

ple satisfies Strong Duality. Those pieces of evidence support the claim that Strong Duality

may hold for a large class of stationary infinite-dimensional linear programs.

Since we have explicit primal and dual optimal solutions for the stationary hydro-thermal

planning problem, the natural follow-up question is whether or not those solutions are ex-

treme points. Unfortunately, there is a gap in the literature regarding basic feasible solutions

for finite and infinite-dimensional linear programs [10, 11]. This motivated our investiga-

tion for an algebraic characterization of extreme points that could serve for computations

similar to the finite-dimensional counterpart. Given a feasible solution, we introduce the

notion of an asymptotically compatible (AC) vector, which connects with the idea of a fea-

sible direction. Indeed, we prove that a direction is AC with a feasible solution if, and only

if, the direction and the opposite sign direction are both feasible at the same point.

The asymptotically compatible concept is central to extending the notion of a basic feasible

solution to any convex set defined by arbitrary linear constraints. Indeed, a feasible solution

is extreme if, and only if, the linear equality system induced by the binding constraints has
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a unique AC solution, which is the trivial one. We observe from our definition that the set of

AC vectors form a vector subspace. Using our basic feasible solution characterization, we

prove that the primal and dual optimal solutions to the hydro-thermal planning problems

are extreme points. We then describe a general method, called the Gauss-Jordan method, to

find all the solutions for binding linear equality systems called the row-finite linear systems.

Finally, we illustrate this technique in an extreme point example.

As a more general application, we provide alternative proof of the extreme point charac-

terization for network flows on infinite graphs of finite degrees [11]. Recall that a flow in

a finite digraph is extreme if, and only if, the residual graph has no weak cycle. Such a

condition is only necessary for a digraph with a countable set of nodes and a finite degree

in each node. Indeed, we prove that a flow is extreme if, and only if, the residual graph has

no weak cycle and there are not two arc-disjoint trees with positive max-residual capacity

at a common node. Intuitively, we cannot reroute flows from “infinity” in one tree into

another. Our extension of a basic feasible solution is a simplifying tool for the extreme

flow characterization of [11].

1.2 Contributions

In Chapter 2, we develop a realistic model for the fleet sizing and charging infrastructure

planning for Battery Electric Buses (BEBs). Below, we summarize our contributions based

on each category:

1. Modeling: Our Optimal Planning of Charging Facilities and Electric Bus Fleet (OPCF-

EBF) model for public transit systems has two distinct features:

(a) The two-time-scale structure of the OPCF-EBF model brings together long-

term planning and short-term operation, with annual investment decisions of

charging infrastructure and fleet composition over a decade-long transition hori-

zon and hourly operation decisions of bus charging and scheduling over 24
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hours in each planning year.

(b) Modular arithmetic is used to model the repeating of daily 24-hour bus de-

mand in each planning year. Various charging strategies, such as early charging

(charging before battery full depletion), idling (neither working nor charging),

non-preemptive charging (charging until full), are modeled, together with prac-

tical planning strategies such as utilization of existing bus depots and route

terminals as potential charging facilities, respecting of retirement schedules of

conventional buses, and various realistic investment and operational costs.

2. Characterizations: We characterize the computational complexity of the proposed

model. The proposed OPCF-EBF model is shown to be NP-hard through reduction

from the uncapacitated facility location problem. Even with one planning period and

two charging states for depot-charged BEBs, the OPCF-EBF model is still NP-hard,

as the numbers of bus routes and charging depots grow.

3. Algorithm: We propose an effective and computationally scalable primal heuristic

called “Policy-Restriction” that significantly outperforms and improves Gurobi.

4. Real-world case studies: We conduct extensive computational studies using real-

world data from public transit systems in major cities in the U.S. and around the

world, which reveal insights into the optimal investment and operational strategies.

For example, an optimal investment decision tends to invest in depot chargers before

on-route chargers; an optimal operational solution tends to use on-route BEBs to

meet base-load bus demand and to use depot BEBs to meet peaking bus demand.

These empirical insights are also explained through theoretical analysis.

In Chapter 3, we explore another dimension of the OPCF-EBF model with only one bus

route and only depot BEBs, but an arbitrary number of battery states. We call this a fleet-

sizing problem. The goal is to prove that, under a simple non-preemptive charging strategy
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with no early charging and idling, the fleet-sizing problem is polynomially solvable. For

this, we develop the following techniques:

1. Tight LP relaxation of the operation problem: The coefficient matrix of the op-

eration problem may not be totally unimodular (TU). However, interestingly, by ex-

ploiting the rich symmetry imposed by the non-preemptive charging policy and the

modular arithmetic, we can reformulate and unimodularly transform the operation

problem to an equivalent formulation that does have the TU property.

2. The fleet sizing problem as a Separable Convex Integer Program:

(a) Using the previous result, we extend the value function of the operation prob-

lem to an extended-real-valued convex piecewise linear function. Thus, the

fleet sizing problem is essentially a separable convex integer program (SCIP),

separable over the investment periods.

(b) Underlying this result is a proximity theorem proved for general SCIP that an

optimal integer solution of SCIP belongs to the integer lattice of a ball centered

at the LP relaxation’s optimal solution. The key result shows that the search

over the integer lattice can be further reformulated as a new integer linear pro-

gram, which has an exact LP relaxation.

(c) Finally in the last step, we bound the number and size of all the LPs involved,

and refer to the arithmetic complexity of an algorithm of Vaidya [12] to con-

clude the polynomial-time complexity of the fleet sizing problem.

3. The Dyadic Contiguous Row (DCR) matrix: We introduce a special class of sep-

arable integer program with totally unimodular constraints that can serve as a two

stage decomposition method to prove polynomial solvability. In fact, we define the

notion of a Dyadic Contiguous Row (DCR) matrix which extends the definition of

a row-circular matrix of Bartholdi [6]. Given that the second stage integer program
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has a DCR coefficient matrix, the same complexity analysis performed for the fleet

sizing problem applies.

In Chapter 4, we investigate a notion of duality for infinite dimensional stationary linear

programs:

1. A duality framework: Based on the duality rules for finite dimensional LPs and

restrictions to appropriate `∞ and `1 spaces, we introduce primal and dual infinite

dimensional stationary linear programs and prove weak duality.

2. Evidence of a strong duality result: Strong duality may hold for a large class

of problems in our infinite dimensional setting as illustrated by a stationary hydro-

thermal power generation planning problem. Using a counter-example, we show that

weak duality may fail if one disregards the `∞ and `1 set constraints. However, that

same example satisfies strong duality when the `∞ and `1 constraints are enforced.

In Chapter 5, we investigate an algebraic method to characterize extreme points for con-

vex sets defined by row-finite linear systems. This is motivated by the primal and dual

optimal solutions of the stationary hydro-thermal power generation planning problem. The

following are the main aspects of Chapter 5:

1. Asymptotically Compatible vectors and basic feasible solutions: The geometric

definition of an extreme point may not be a convenient method to certify whether or

not a given point of a convex set is extreme. Given arbitrary linear constraints, we

extend the definition of a basic feasible solution using the notion of Asymptotically

Compatible (AC) vectors. We show that a point is extreme if and only if the only

AC-solution to the linear equality system induced by the set of active constraints

is the trivial solution. This method provides a direct proof that the primal and dual

optimal solutions of the stationary hydro-thermal power generation planning problem

are extreme points.
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2. Row-finite linear systems: A row-finite linear system over the sequence space of

real numbers is a countable set of linear constraints induced by coefficients with a

finite number of non-zero elements. We observe that the Gauss-Jordan elimination

method of [13] can parameterize all the solutions of a row-finite equality system.

Such method may certify the existence of a unique (or multiple) AC-solution for the

set of active constraints’, or, equivalently, that the corresponding feasible solution is

(not) extreme. This idea is a direct parallel with the Gaussian elimination method

for equality linear systems of finite dimension but it has the rightmost pivoting as an

important distinction.

3. Application to extreme flows over countably infinite graphs: We illustrate the use

of our extreme point result for an alternative proof of the extreme flow characteriza-

tion in countably infinite graphs of finite node degree. The original result is from [11]

and it provides another condition on the residual graph besides not having a cycle that

form the necessary and sufficient conditions for a network flow to be extreme.
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CHAPTER 2

AN OPTIMAL PLANNING MODEL FOR CHARGING FACILITY AND

BATTERY ELECTRIC BUS FLEET

2.1 Introduction

Modern transportation relies heavily on fossil fuels. However, fossil fuel consumption en-

dangers our world. According to the Intergovernmental Panel on Climate Change, [14],

carbon dioxide emission is the predominant cause of global warming and has already in-

creased the global average temperature by one degree Celsius above the pre-industrial rev-

olution level. An increase above two degrees Celsius can cause extreme weather events, a

shortage of food supply, and higher sea levels. The United States, among many other coun-

tries, aims to reduce its net greenhouse gases (GHG) emissions by 50% below the 2005

levels in the coming decade, according to [15].

To curb the GHG emission, the world is seeking alternative energy sources. Worldwide, the

transportation sector is the second largest contributor to greenhouse gas emissions [16] after

the electricity industry, while in the US, it is the largest contributor [1]. Although buses

represent a fraction of the transportation segment, their effect on public health is significant,

due to the fact that buses operate in densely populated urban areas and emissions such

as nitrogen oxide and particulate matter adversely affects cardiovascular and respiratory

health, see [17] and [18].

One attractive solution in the public transit segment is the Battery Electric Bus (BEB). A

BEB produces zero tailpipe GHG emissions, its fuel cost is around 40% cheaper than a

similar-sized fossil-fuel bus, its noise level is significantly lower, and it has less mainte-

nance need. There has been an ever-growing number of transportation agencies all over the

world switching to BEBs as a more sustainable option for public transportation [19].
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However, BEB technology poses new challenges to the bus operation planning, fleet sizing,

and the charging placement due to the limited travel range and long charging hours. The

optimal charging infrastructure plan may vary with the spatial distribution of the routes.

The minimum fleet size to maintain the same service level may increase to compensate for

the charging time. Indeed, when planning the transition to an entirely electric bus fleet,

one should consider the fleet sizing, charging placement, and the impact on bus operation

altogether.

There are two typical charging technologies that are adopted on a commercial scale, namely

depot and on-route charging. Depot charging refers to charging BEBs with a low-voltage

alternating current (AC) system in a bus depot or garage, which has lower deployment and

usage costs but requires several hours to fully charge a BEB. On-route charging, in contrast,

uses a direct current (DC) fast charging system. It has a higher cost than a depot charger,

but can be used in bus terminals for fast charging during the layover time of a bus to provide

the energy needed for a round trip on a bus route.

In this thesis, we propose a novel integer linear optimization model for the joint optimal

planning and operation of depot and on-route charging facilities and BEB fleets. This

model plans the transition to an entirely BEB fleet through annual investment targets which

consider the agency’s budget, the conventional bus retirement targets, and the operation of

the mixed fleet of BEBs and conventional buses in transition. The model is realistic in cap-

turing periodic bus schedules, BEB charging dynamics, various investment and operational

costs, with depot locations, bus routes, and bus demand extracted from real transit agency

data.

2.2 Related work

The scientific literature on electric vehicles (EVs) has investigated a wide variety of mod-

eling techniques and applications. In this section, we mention some recent papers that are

related to electrical bus fleet planning and operations.
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[20] presents a model for EV fleet renewal from the French national postal service. [21] use

distributionally robust optimization to plan the battery swapping infrastructure. The work

of [22] evaluates the implementation of battery swapping for EVs in freight logistics, while

[23] consider the environmental impact of the adoption of electric passenger vehicles. [24]

consider an EV routing model with a nonlinear charging function. [4] present a literature

review of other models related to EV infrastructure planning, EV charging operations, and

public policy in the EV industry.

The work of [25] considers battery charging scheduling, battery swapping, and the bus

scheduling of a mixed bus fleet including battery-electric, compressed natural gas, diesel,

and hybrid-diesel buses. [26] concentrate on fast charging scheduling of battery electric

buses to minimize charging costs and power grid impact. [27] focus on battery capacity

fade and propose an optimization model, which considers the reduction in the storage ca-

pacity of batteries, to schedule the electric bus charge. The works of [3], [28], and [29]

consider a planning model for the composition of an electrical bus fleet using depot charge

BEBs. With regards to technological factors, the paper of [30] assesses the impact of

wireless chargers on battery-electric bus scheduling. [31] consider a hybrid solution of

hydrogen and electric buses with the concept of multi-product charging stations.

With regards to modeling specific features, the papers by [32] and [3] propose models for

installing fast chargers focused on the electric demand charge, which is the cost associated

with the variations in power demand. [33] assess the potential reduction of the peak demand

charge by installing energy storage units for on-route fast chargers. The works of [34] and

[35] propose a fast charging location model for battery-electric buses, considering the bus

operation and the power distribution. [36] propose a stochastic model for managing the

electric bus charge, the photovoltaic energy production, and energy storage systems. [37]

and [38] present a long-term multi-period model for the electric bus integration into urban

bus networks.

It is also worth commenting on the diversity of modeling techniques associated with battery-
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electric buses. [39] use bi-level programming to formulate an electrical transit route plan-

ning problem, where the upper level determines the route structure and charging station

location while the lower level calculates the user cost. [40] propose a charger location

model that describes the bus charging using queuing theory. [41]’s work is based on a

stochastic model for the interaction between bus charge and battery swap stations for taxi

and bus fleets. [42] propose a mixed-integer second-order cone programming model for

the charging planning of battery-electric buses.

2.3 Contributions

1. Modeling: This thesis proposes an Optimal Planning of Charging Facilities and Elec-

tric Bus Fleet (OPCF-EBF) model for public transit systems to optimally plan the

transition to an entirely electric bus fleet with several innovative features.

(a) The two-time-scale structure of the OPCF-EBF model brings together long-

term planning and short-term operation, with annual investment decisions of

charging infrastructure and fleet composition over a decade-long transition hori-

zon and hourly operation decisions of bus charging and scheduling over 24

hours in each planning year.

(b) Modular arithmetic is used to model the repeating of daily 24-hour bus de-

mand in each planning year. Various charging strategies, such as early charging

(charging before battery full depletion), idling (neither working nor charging),

non-preemptive charging (charging until full), are modeled, together with prac-

tical planning strategies such as utilization of existing bus depots and route

terminals as potential charging facilities, respecting of retirement schedules of

conventional buses, and various realistic investment and operational costs.

2. Characterizations: We characterize the computational complexity of the proposed

model and identify special structures in a subclass of the proposed model that can be
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polynomially solved through an interesting transformation.

(a) The proposed OPCF-EBF model is shown to be NP-hard through reduction

from the uncapacitated facility location problem. Even with one planning pe-

riod and two charging states for depot-charged BEBs, the OPCF-EBF model is

still NP-hard, as the numbers of bus routes and charging depots grow.

(b) We show in Chapter 3 that an important class of OPCF-EBF problems, which

has one bus route and an arbitrary number of charging states for depot-charged

BEBs under a simple charging policy, has a nice constraint structure after a

linear transformation and is polynomially solvable.

3. Algorithm: We propose an effective and computationally scalable primal heuristic

called “Policy-Restriction” that significantly outperforms and improves Gurobi.

4. Real-world case studies: We conduct extensive computational studies using real-

world data from public transit systems in major cities in the U.S. and around the

world, which reveal insights into the optimal investment and operational strategies.

For example, an optimal investment decision tends to invest in depot chargers before

on-route chargers; an optimal operational solution tends to use on-route BEBs to

meet base-load bus demand and to use depot BEBs to meet peaking bus demand.

These empirical insights are also explained through theoretical analysis.

The rest of Chapter 2 is structured as follows. We introduce the OPCF-EBF model in Sec-

tion 2.4. In Section 2.5, we analyze the complexity of the proposed OPCF-EBF model.

Section 2.6 proposes a primal heuristic to solve the challenging large-scale integer opti-

mization model. Section 2.7 reports real-world case studies with observed insights and

theoretical analysis. Section 2.8 concludes Chapter 2.
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2.4 An optimal planning model for charging facility and battery electric bus fleet

The OPCF-EBF model is formulated as a two-stage problem in Section 2.4.1, where invest-

ment problem is in the first stage and the operational problem is the second-stage recourse.

The detailed operational problem is formulated in Section 2.4.2.

2.4.1 The OPCF-EBF model

We first define all the investment parameters and investment decision variables before lay-

ing out the overall two-stage OPCF-EBF model.

Investment parameters

Let Θ denote the set of yearly investment periods, (i.e., Θ = {1, 2 . . . , N} for some N ∈

Z+). Let I be the set of depot sites, J be the set of bus routes, K be the set of relevant

depot chargers, and R be the set of terminal stations available for on-route charging. In

the model, we allow BEBs from different manufacturers, since different BEB models can

have different charging times, battery capacities, unit costs, and ability to perform on-route

charging. In particular, denote Bdepot and Broute as the set of BEB models that can be

charged by depot and on-route chargers, respectively.

Investment decision variables

Let x ∈ {0, 1}|I|×|Θ| be the vector of binary variables such that xθi = 1 implies that the

depot site i ∈ I can install depot chargers during the investment period θ ∈ Θ, and xθi = 0

otherwise. Let y ∈ Z|I|×|K|×|Θ|+ be the vector of integer variables whose entry yθik represents

the number of depot chargers of a given plug type k ∈ K (e.g. levels 1 and 2 chargers)

for a given site i ∈ I and investment period θ ∈ Θ. Let χ ∈ Z|R|×|Θ|+ represent the

number of on-route chargers at each terminal station r ∈ R and investment period θ ∈ Θ.

Let η ∈ Z|Bdepot|×|J |×|Θ|+ and η̃ ∈ Z|Broute|×|J |×|Θ|+ be the numbers of depot and on-route
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BEBs respectively along each route j ∈ J , given the BEB type, and investment period.

Let ξ ∈ Z|J |×|Θ|+ be the vector of conventional buses in each route j ∈ J and investment

period θ ∈ Θ.

Two-stage OPCF-EBF model

The OPCF-EBF model is formulated as a two-stage integer optimization model in the in-

vestment variables below.

min
∑
θ∈Θ

γθ ·
(
Iθ(x, y, χ, η, η̃, ξ) + Fθ(x, y, χ, η, η̃, ξ)

)
(2.1a)

s.t. Iθ(x, y, χ, η, η̃, ξ) ≤ Cθ, θ ∈ Θ, (2.1b)

xθi ≥ xθ−1
i , yθik ≥ yθ−1

ik , χθr ≥ χθ−1
r ,

i ∈ I, k ∈ K,
r ∈ R, θ ∈ Θ,

(2.1c)

ηθbj ≥ ηθ−1
bj , η̃θb̄j ≥ η̃θ−1

b̄j
, ξθj ≤ ξθ−1

j ,
b ∈ Bdepot, b̄ ∈ Broute,
j ∈ J , θ ∈ Θ,

(2.1d)

Qθ

ik
xθi ≤ yθik ≤ Q

θ

ikx
θ
i , 0 ≤ χθr ≤ χθUB,r,

i ∈ I, k ∈ K,
r ∈ R, θ ∈ Θ,

(2.1e)

ξθLB,j ≤ ξθj ≤ ξθUB,j, j ∈ J , θ ∈ Θ, (2.1f)

xθi ∈ {0, 1}, yθik ∈ Z+, χ
θ
r ∈ Z+,

i ∈ I, k ∈ K,
r ∈ R, θ ∈ Θ,

(2.1g)

ηθbj ∈ Z+, η̃
θ
b̄j ∈ Z+, ξ

θ
j ∈ Z+,

b ∈ Bdepot, b̄ ∈ Broute,
j ∈ J , θ ∈ Θ.

(2.1h)

The objective function (2.1a) has two parts Iθ and Fθ for each investment period θ, where Iθ

represents the investment related cost, Fθ is the operational cost associated with the infras-

tructure decision (x, y, χ, η, η̃, ξ), and γθ is a discount factor. The investment cost Iθ is
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defined as

Iθ(x, χ, y, η, η̃, ξ) =
∑
i∈I

cθx,i(x
θ
i − xθ−1

i ) +
∑

(i,k)∈I×K

cθy,ik(y
θ
ik − yθ−1

ik )

+
∑
r∈R

cθχ,r(χ
θ
r − χθ−1

r ) +
∑

(b,j)∈Bdepot×J

cθη,bj(η
θ
bj − ηθ−1

bj )

+
∑

(b,j)∈Bdepot×J

cθη̃,bj(η̃
θ
bj − η̃θ−1

bj ) +
∑
j∈J

cθξ,j · (ξθj − ξθ−1
j ),

(2.2)

which is incurred on the incremental change of charging facilities and bus fleet in year θ.

The vectors cx, cy, cχ, cη, cη̃, and cξ in (2.2) represent the unit cost of the corresponding

decisions x, y, χ, η, η̃, and ξ. The cost cξ signifies the financial benefit of retiring a con-

ventional bus, which can be also interpreted as a penalty for using fossil fuel-based buses.

The operational cost Fθ is given by a recourse problem in operational decisions and will be

presented in Section 2.4.2.

In terms of constraints, we have the budget constraint (2.1b) on the investment costs, where

Cθ is the investment budget in period θ. Constraints (2.1c) and (2.1d) describe the mono-

tone expansion of the charging infrastructure and the BEB fleet, and the monotone reduc-

tion of the conventional bus fleet. We have the upper and lower bounds (2.1e) on the num-

bers of depot and on-route chargers, where Qθ

ik
and Q

θ

ik are the upper and lower bounds on

the number of depot plugs yθik given that the depot site i is open (i.e., xθi = 1), while χθUB,r

is the upper bound on the number of on-route chargers χθr. The bus retirement target con-

straint (2.1f) has upper and lower bounds ξθLB,j and ξθUB,j for the number of conventional

buses ξθj in each year θ.

2.4.2 The operational problem as the recourse

The goal of the operational problem is to find an optimal daily schedule for the charging

and operation of a mixed fleet of BEBs and conventional buses in an investment period with

a given investment decision. We use the information on existing bus routes and schedules
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published by public transit agencies, see [43], and assume that the mixed fleet should oper-

ate on the same routes and satisfy the same bus demand as in the current system. To obtain

the bus demand for each hour and route, we count the number of operating buses from the

published bus schedules. See Figure 2.1a as an illustration of the bus schedules for routes

2, 4, and 102 on a weekday in Atlanta’s MARTA system and Figure 2.1b for the total bus

demand in Atlanta on a weekday in August 2019.

(a) Weekday bus schedule for routes 2, 4, and 102. (b) Weekday total bus demand.

Figure 2.1: Atlanta MARTA bus schedule for routes 2,4, and 102, and the total bus demand
in August 2019.

In the following sections, we describe the operational problem as a recourse to the invest-

ment decisions. Sections 2.4.2, 2.4.2, and 2.4.2 describe the parameters, decisions, and

constraints, which are put together in Section 2.4.2 to formulate the operational problem,

whose optimal objective value is the operational cost Fθ in the overall model (2.1a).

Parameters in the operational problem.

1. Time related parameters: Let [0 : T−1] be the set of time intervals {0, 1, . . . , T−1}

of the operational horizon, which is treated as the cyclic group Z/TZ of integers

modulo T . In this way, the operation becomes cyclic, i.e., the operation at time t =

T − 1 loops back to time t = 0 as the next time step. This construction models

stationary, periodic operation rather than transient operation with fixed initial (t = 0)

and final conditions (t = T − 1). If each t ∈ [0 : T − 1] is an hourly interval and

T = 24, then the operational problem models the repeated daily bus operation.

2. Charging related parameters: Different types of BEBs may have different battery
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capacities, thus we define [1 : Wb + 1] := {1, . . . ,Wb + 1} as the set of battery

states of a depot BEB of type b ∈ Bdepot, where s = 1 and s = Wb + 1 denote the

fully charged and the fully discharged states, respectively. The valueWb is the lowest

battery state in which it is still safe to operate a depot BEB. The battery state index

increases with time, that is, if a depot BEB is in a state s when it operates in time

interval t, then it must be in the battery state s+ 1 at time t+ 1 to model the battery

discharging in one interval of operation. Let P be the set of all pairs of depot BEB

types and battery states, i.e., P := {(b, s) : b ∈ Bdepot, s ∈ [1 : Wb + 1]}. Let Lbks be

the number of time intervals needed to fully charge a depot BEB of type b ∈ Bdepot

from state s ∈ [1 : Wb + 1] to s = 1 using a depot charger of type k ∈ K. For

instance, suppose an hourly interval operational model with T = 24 hours. Consider

a depot BEB b with battery capacity Wb = 12 hours. If a depot charger k takes 6

hours to fully charge b, then we have Lbk,13 = 6. One can use a linear interpolation

rule to define the charging time Lbks for other states of charges s ∈ [1 : Wb]. This

means that if the BEB b starts to charge at time t with initial state s = 13, then it will

be fully charged at time t+ 6.

3. Routes related parameters: Let J (r) be the set of bus routes associated with ter-

minal station r. LetR(j) be the set of terminal stations that are connected to the bus

route j. We assume it is possible to accommodate up to CHr on-route charging ac-

tivities within one operational time interval at the terminal station r. Denote byQ the

set of all pairs of routes and terminal stations, i.e., Q := {(j, r) : j ∈ J , r ∈ R(j)}.

Decision variables in the operational problem.

Given an investment period θ ∈ Θ, consider the decisions wθ ∈ ZNd,op+ and vθ ∈ ZNd,op+ as

the number of depot BEBs that are working and idling (i.e. neither working nor charging)

respectively, where the setNd,op is the Cartesian product P×J × [0 : T −1] and represents

all the indices for wθ and vθ, including the depot BEB model, battery state, bus route, and
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time interval. Moreover, let z ∈ ZNd,ch+ represent the battery state at which a group of depot

BEBs starts charging, where Nd,ch is defined as P × I × J × K × [0 : T − 1]. Finally,

the decision βθ ∈ ZNd,beta+ contains the number of depot BEBs that are currently charging

regardless of the charging state, where Nd,beta is defined as B × J × [0 : T − 1].

Let w̃θ ∈ ZNroute+ and ṽθ ∈ ZNroute+ be the decisions that represent the number of on-route

BEBs that are working and idling respectively, for each terminal station, route, and time

interval. The set Nroute is defined as Q × [0 : T − 1]. Let φθ ∈ ZNconv+ and σθ ∈ ZNconv+

be the numbers of conventional buses working and idling for each route and time interval,

whereNconv is J × [0 : T −1]. Finally, let uθ ∈ ZNslack+ be the slack variable of the demand

constraint, where Nslack is J × [0 : T − 1].

Constraints of the operational problem.

1. Bus demand satisfaction: Given (j, t, θ) ∈ J × [0 : T−1]×Θ, we have the demand

constraint

∑
(b,s)∈P

wt,θbjs +
∑

(b,r)∈Broute×R

w̃t,θbjr + φt,θj + ut,θj ≥ dt,θj , (2.3)

where the bus demand dt,θj must be satisfied by the total number of working depot

BEBs (the first term on the left), working on-route BEBs (the second term), working

conventional buses (the third term), and the slack variable ut,θj (the fourth term).

2. Depot BEB dynamics: For all t ∈ [0 : T − 1] and (b, j, θ) ∈ Bdepot × J × Θ, we
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have the depot BEB charging dynamic equations

wt,θbj1 + vt,θbj1 =

Wb+1∑
s=2

∑
(i,k)∈I×K

z
(t−Lbks),θ
bijks + v

(t−1),θ
bj1 , (2.4a)

wt,θbjs +
∑

(i,k)∈I×K

zt,θbijks + vt,θbjs = w
(t−1),θ
bj(s−1) + v

(t−1),θ
bjs , s ∈ [2 : (Wb + 1)], (2.4b)

wt,θbj(Wb+1) = 0, zt,θbijk1 = 0. (2.4c)

Equation 2.4a states that the total number of fully charged (s = 1), working and

idling depot BEBs at time t (the two terms on the left) must equal to the total number

of depot BEBs that just finished charging at time t (the first term on the right) plus

the fully charged idle depot BEBs at time t − 1 (the second term on the right). The

same dynamics applies to the partially charged state s ∈ [2 : (Wb + 1)] in (2.4b).

Equation (2.4c) enforces that the depot BEBs cannot work if fully depleted (the first

equation) and cannot charge if fully charged (the second equation). Recall that all

time indices are cyclic modulo T . Also note that these equations represent a non-

preemptive charging policy (i.e. charging must continue until fully charged), which

is practical for depot BEB charging and assumed throughout the paper.

3. On-route BEB and conventional bus dynamics: The dynamic equations for on-

route BEBs and conventional buses are

w̃t,θbjr + ṽt,θbjr = w̃
(t−1),θ
bjr + ṽ

(t−1),θ
bjr , (2.5a)

φt,θj + σt,θj = φ
(t−1),θ
j + σ

(t−1),θ
j , (2.5b)

for all (j, θ) ∈ J × Θ, r ∈ R(j), b ∈ Broute, and t ∈ [0 : T − 1]. Equations

(2.5a) and (2.5b) are conservation of on-route and conventional buses over each time

interval, respectively. Because the on-route charging is accommodated within an

operational time interval no state-of-charge index is needed.
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4. Bounds on depot BEBs simultaneously being charged: The number of depot

BEBs being charged and the upper bound by the number of depot chargers are given

below

βt,θbijk −
Wb+1∑
s=2

Lbks−1∑
l=0

z
(t−l),θ
bijks = 0, (2.6a)

∑
b∈Bdepot

∑
j∈J

βt,θbijk ≤ yθik, (2.6b)

for all (i, j, k, θ) ∈ I × J × K × Θ, b ∈ Bdepot, and t ∈ [0 : T − 1]. Here, equation

(2.6a) has the total number of type b depot BEBs that are being charged at time t,

depot i, route j, using charging plug type k. Equation (2.6b) is an upper bound on

βt,θbijk by the total number of depot chargers yθik that are invested.

5. On-route charging capacity: The number of working on-route BEBs that can charge

at a given terminal is bounded by the following constraint

∑
b∈Broute

∑
j∈J (r)

w̃t,θbjr ≤ CHr · χθr, (2.7)

for all (r, θ) ∈ R×Θ, and t ∈ [0 : T − 1]. Recall that CHr is the charging capacity

of an on-route charger over a time interval and χθr is the number of on-route chargers

on route r, investment period θ.

6. Total numbers of BEBs and conventional buses: The link between the operational

variables and the total number of BEBs and conventional buses is given below

Wb∑
s=1

w0,θ
bjs +

Wb+1∑
s=1

v0,θ
bjs +

∑
i∈I

∑
k∈K

β0,θ
bijk = ηθbj, b ∈ Bdepot, (2.8a)

∑
r∈R(j)

w̃0,θ
bjr + ṽ0,θ

bjr = η̃θbj, b ∈ Broute, (2.8b)

φ0,θ
j + σ0,θ

j = ξθj , (2.8c)
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for all (j, θ) ∈ J × Θ. It is enough to relate the total number of buses to the opera-

tional variables at time t = 0, because the dynamic equations (2.4)-(2.5) imply bus

conservation, see Section 2.4.3.

The model of the operational problem

Finally, we can formulate the operational problem using the constraints defined above:

Fθ(x, y, χ, η, η̃, ξ) := min p>z z
θ + p>ww

θ + p>w̃w̃
θ + p>φφ

θ + p>u u
θ

s.t. (2.3)− (2.8),

wθ, vθ ∈ ZNd,op+ , zθ ∈ ZNd,ch+ , βθ ∈ ZNd,beta+ ,

w̃θ, ṽθ ∈ ZNroute+ , φθ, σθ ∈ ZNconv+ , uθ ∈ ZNslack+ .

(2.9)

Some observations are instructive regarding the operational costs. The cost pz contains the

unit electricity cost for charging a depot BEB plus the deadhead cost of a trip between a

route and a depot charging site. The pw and pφ represent the unit costs of operating depot

BEBs and conventional buses, respectively, which are essentially the bus driver costs. The

pw̃ contains the unit electricity cost associated with the incremental charge at on-route

stations plus the bus driver cost. The pu represents the penalty for the demand constraint

violation.

2.4.3 Properties of the optimal planning of model

Conservation of the total number of buses

As our model does not track individual buses, but rather only tracks the total number of

buses in different states, it would be assuring to verify that the total number of each type of

buses in the fleet is conserved over operating times within each investment period. Indeed,

Eq. (2.5a) and (2.8b) imply that the total number of on-route BEBs counted in interval t is
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equal to the total number of invested on-route BEBs η̃θbj as

∑
r∈R(j)

w̃t,θbjr + ṽt,θbjr = η̃θbj, b ∈ Broute, (2.10)

for all (j, θ) ∈ J × Θ and t ∈ [0 : T − 1]. The conservation of the total number of

conventional buses follows analogously as φt,θj + σt,θj = ξθj for all j ∈ J , t ∈ [0 : T − 1],

and θ ∈ Θ. For depot BEBs, the conservation is stated in Lemma 2.4.1.

Lemma 2.4.1. The total number of depot BEBs is constant through the operational horizon.

That is, the following equality holds

Wb∑
s=1

wt,θbjs +

Wb+1∑
s=1

vt,θbjs +
∑
i∈I

∑
k∈K

βt,θbijk = ηθbj,
t ∈ [0 : T − 1], b ∈ Bdepot,
j ∈ J , θ ∈ Θ.

(2.11)

Proof of Lemma 2.4.1. Equation (2.11) is proved by induction. Indeed, the base case t = 0

follows from the constraint (2.8a).Denote by Ct the term
∑Wb

s=1w
t,θ
bjs +

∑Wb+1
s=1 vt,θbjs. Note

that on the left-hand side of (2.11) we have

Wb∑
s=1

wt,θbjs +

Wb+1∑
s=1

vt,θbjs +
∑
i∈I

∑
k∈K

βt,θbijk = Ct +
∑
i∈I

∑
k∈K

Wb+1∑
s=2

Lbks−1∑
l=0

z
(t−l),θ
ijks

= Ct +
∑
i∈I

∑
k∈K

Wb+1∑
s=2

(
Lbks−2∑
l=0

z
(t−l−1),θ
bijks + zt,θbijks

)
, (2.12)

where equation (2.12) is obtained by splitting the sum
∑Lks−1

l=0 z
(t−l),θ
bijks into the summation

of
∑Lks−1

l=1 z
(t−l),θ
ijks and zt,θijkst, and then by re-indexing l from 0 to Lbks − 2. Sum the depot

transition equations (2.4a) and (2.4b) over the states of charge s ∈ [1 : Wb + 1] to get

Ct +
∑
i∈I

∑
k∈K

Wb+1∑
s=2

zt,θijks = C(t−1) +
∑
i∈I

∑
k∈K

Wb+1∑
s=2

z
(t−Lks),θ
ijks . (2.13)
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Replace (2.13) into (2.12) and use the induction hypothesis for t− 1 to conclude the proof:

∑
s∈[1:W ]

wt,θbjs +

Wb+1∑
s=1

vt,θbst +
∑
i∈I

∑
k∈K

βt,θbijk

(2.12)+(2.13)
= C(t−1) +

∑
i∈I

∑
k∈K

Wb+1∑
s=2

(
Lks−2∑
l=0

z
(t−l−1),θ
ijks + z

(t−Lks),θ
ijks

)

= C(t−1) +
∑
i∈I

∑
k∈K

Wb+1∑
s=2

Lbks−1∑
l=0

z
(t−1−l),θ
ijks

(β def.)
= C(t−1) +

∑
i∈I

∑
k∈K

β
(t−1),θ
bijk = ηθbj.

2.5 Computational complexity

2.5.1 Complexity of the OPCF-EBF model

The OPCF-EBF problem defined in (2.1)-(2.9) is NP-hard. The idea of the proof is to

create a mapping between the charging depot and bus terminals in the OPCP-EBF to the

facilities and customers in the uncapacitated facility location problem. Moreover, it turns

out that some special classes of the OPCF-EBF problem are already NP-hard as shown in

the following theorem.

Theorem 2.5.1. The OPCF-EBF problem is NP-hard. In particular, even an OPCF-EBF

problem with a single investment period and only depot BEBs of two battery states or only

on-route BEBs is NP-hard.

Proof of Theorem 2.5.1. Let us denote by λi ∈ {0, 1} the binary variable that corresponds

to decision to open or not the facility i ∈ [n] := {1, . . . , n} and by πij ∈ {0, 1} the binary

variable that corresponds to meet the demand of j-th client using the i-th installation. Con-

sider the facility setup cost fi associated with variable λi and the supply cost gij associated
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with λij . Below, we present an instance of the UFL problem:

min
∑n

i=1 fiλi +
∑n

i=1

∑m
j=1 gijπij

s.t.
∑n

i=1 πij = 1, ∀j ∈ [m],∑m
j=1 πij ≤ m · λi, ∀i ∈ [n],

λi ∈ {0, 1}, πij ∈ {0, 1}, ∀i ∈ [n], ∀j ∈ [m].

We now define the reduction to an instance of the OPCF-EBF problem starting with the set

of indices. Consider just one type of depot BEB, Bdepot = {1}, but not a single on-route

BEB, Broute = ∅, n potential charging sites, I = {1, . . . , n}, m routes, J = {1, . . . ,m},

only one plug type, K = {1}, not a single on-route charging facility, R = ∅, battery per-

formance of one time-interval, W1 = 1, operational horizon T = 2, and single investment

period Θ = {1}. To improve the presentation of this instance of the OPCF-EBF problem,

we omit the sub-indices that have only one possible value such as the depot BEB type b,

the plug type k, and the investment period θ.

Consider the lowerQ
i
and upperQi bounds of plugs as being equal to 0 andm, respectively,

for all site i ∈ I. Let djt be the demand for buses and let Ls be the charging time as defined

below

djt =


1, if t = 0,

0, if t = 1,
, Ls =


0, if s = 1,

1, if s = 2,

for every route j ∈ J . Note that s = 1 is the fully charged state, and s = 2 is the fully

depleted state, since W = 1. The idea of our construction is to have the depot BEBs

working at time t = 0 and charging at time t = 1.

We assume that the initial infrastructure condition is zero, that is, xi0 = 0, yi0 = 0, ηj0 = 0,

and ξj0 = 0, for all depots i ∈ [n] and routes j ∈ [m]. If the initial condition of conventional

buses is zero, ξj0 = 0, then the number of conventional buses in the period of investment

θ = 1 is also zero, that is, ξj1 = 0. This implies that the number of working φjtθ and

idling σjtθ conventional buses are zero for all time intervals t ∈ [0 : 1], route j ∈ [m], and
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investment period θ = 1.

Let H be the constant
∑n

i=1 fi +
∑n

i=1

∑m
j=1 gij , and consider the unit cost of a depot

BEB cbeb as H + 1. Let the investment budget C be equal to
∑n

i=1 fi + m · cbeb, which

is essentially a large enough constant so all possible investments are feasible. Then the

investment part of this OPCF-EBF instance is given below:

min
∑n

i=1 fixi +
∑m

j=1 cbeb · ηj + F (x, y, η)

s.t.
∑n

i=1 fixi +
∑m

j=1 cbeb · ηj ≤ C,

0 ≤ yi ≤ m · xi, ∀i ∈ [n],

xi ∈ {0, 1}, yi, ηj ∈ Z+, ∀i ∈ [n], ∀j ∈ [m],

and there is no on-route and conventional bus variables since those are zero.

For the operational problem, we have two remarks regarding the depot working and charg-

ing variables w and z, respectively. We omit the state of charge s = 1 of the depot working

variable w, since this is the only possible state for a working depot BEB given that W = 1.

Similarly, we omit the state of charge s = 2 for z, since this is also the only possible state

of charge for a depot BEB to start charging in our instance. For the depot idling BEBs v,

we keep the state of charge index s ∈ [1 : 2] because it is possible for a depot BEB to

be idle in both fully charged (s = 1) and fully discharged (s = 2) states. Let the demand

constraint violation cost cu be equal to (m + 1) · cbeb. Below, we present the operational
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part of our OPCF-EBF instance:

F (x, y, η) = min
∑n

i=1

∑m
j=1

[
0 · z0

ij + gij · z1
ij

]
+
∑m

j=1

∑1
t=0 cu · ujt

s.t. wtj + utj ≥ dtj, ∀j ∈ [m], ∀t ∈ [0 : 1]

wtj + vtj1 =
∑n

i=1 z
(t−1)
ij + v

(t−1)
j1 , ∀j ∈ [m], ∀t ∈ [0 : 1],∑n

i=1 z
t
ij + vtj2 = w

(t−1)
j + v

(t−1)
j2 , ∀j ∈ [m], ∀t ∈ [0 : 1],

βtij = ztij, ∀i ∈ [n], ∀j ∈ [m], ∀t ∈ [0 : 1],∑
j∈[m] β

t
ij ≤ yi, ∀i ∈ [n], ∀t ∈ [0 : 1],

ηj =
(
vtj1 + vtj2 + wtj +

∑n
i=1 β

t
ij

)
, ∀j ∈ [m], ∀t = 0,

wtj, v
t
js, z

t
ij, β

t
ij, u

t
j ∈ Z+, ∀i ∈ [n], ∀j ∈ [m], ∀t ∈ [0 : 1],

∀s ∈ [1 : 2].

Now that we have defined the instance of the OPCF-EBF, we focus on the reduction of the

UFL problem. Let (λ, π) be a feasible solution of the UFL problem with an objective value

less than or to K. Note that K is less than or equal to H =
∑n

i=1 fi +
∑n

i=1

∑m
j=1 gij ,

because H is an upper bound for the UFL objective cost. Consider the following OPCF-

EBF-induced solution:

xi = ξi, yi = m · λi, ηj = 1, (2.14a)

wtj =


1, if t = 0,

0, if t = 1,
ztij =


0, if t = 0,

πij, if t = 1,
, (2.14b)

vtjs = 0, βtij = ztij, utj = 0, (2.14c)

for every site i ∈ [n], route j ∈ [m], charge state s ∈ [1 : 2], and time interval t ∈ [0 : 1].

The solution defined by the equations (2.14a), (2.14b), and (2.14c) is feasible for the OPCF-

EBF instance, and it has objective value equal to
∑n

i=1 fiλi +
∑n

i=1

∑m
j=1 gijπij + cbeb ·

m, which is equal to the objective value of the UFL problem plus the constant cbeb · m.

Therefore, the objective value of the OPCF-EBF instance is less or equal to K + cbeb ·m,
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which is also less than or equal to H + cbeb ·m.

We now check the other side of the reduction. Consider a feasible solution of the OPCF-

EBF instance (x, y, η, w, v, z, β, u) with objective value K + cbeb · m, where K is less

than or equal to H . Such solution exist, since we can take (x, y, η, w, v, z, β, u) as defined

by (2.14a), (2.14b), and (2.14c), and the following feasible solution (λ, π) for the UFL

problem:

λi =


1, if i = 1,

0, otherwise,
πij =


1, if i = 1,

0, otherwise,

for each site i ∈ [n] and route j ∈ [m].

The first observation regarding the feasible solution of the OPCF-EBF is that the the de-

mand constraint violation ujt is 0, and that the number of depot BEBs ηj equals 1, for every

route j ∈ [m] and interval t ∈ [0 : 1]. Indeed, the objective function

Obj :=
n∑
i=1

fixi +
m∑
j=1

cbeb · ηj +
n∑
i=1

m∑
j=1

gijz
1
ij +

m∑
j=1

1∑
t=0

cu · utj

evaluated at the OPCF-EBF solution is such that Obj ≤ H + cbeb ·m, by hypothesis, and

from the choice of cbeb we have that H < cbeb. Thus, Obj < cbeb · (m + 1). Since cu

equals cbeb · (m + 1) this implies that ujt is 0, for every route j ∈ [m] and every time

interval t ∈ [0 : 1]. The demand constraint wtj + utj ≥ dtj at t = 0 implies that

ηj ≥ w0
j ≥ 1− u0

j = 1, ∀j ∈ J .

With this lower bound on ηj , we have that Obj satisfies cbeb ·m ≤ Obj < cbeb · (m + 1),

which implies that both ηj and w0
j must be equal to 1 for every route j ∈ [m].
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The second observation is that the number of working wtj and idling vtjs depot BEBs satisfy

wtj =


1, if t = 0,

0, if t = 1,
and vtjs = 0,

for every route j ∈ [m], state of charge s ∈ [1 : 2], and time interval t ∈ [0 : 1]. Indeed,

because the depot BEBs have enough charge for only one time interval, all the buses must

be charging at time t = 1 to be able to work again at time t = 0. This implies that wj1 = 0,

for all j ∈ [m]. Consequently, the number of idling depot BEBs vtjs is equal to 0, for

all j ∈ [m], s ∈ [1 : 2], t ∈ [0 : 1].

The third observation is that the solution (λ, π) defined by

λi = xi, πij = z1
ij,

is feasible for the UFL problem with objective value K less than or equal to H . From the

state transition dynamics wtj + vtj1 =
∑n

i=1 z
(t−1)
ij + v

(t−1)
j1 at time t = 1, we conclude the

identity
∑n

i=1 z
1
ij = 1, for every route j ∈ [m]. It follows from 0 ≤ yi ≤ m · xi, βtij = ztij ,

and
∑

j∈[m] β
t
ij ≤ yi the constraint

∑
j∈[m] z

1
ij ≤ m · xi, for every site i ∈ I . Note that z1

ij is

a binary variable as there is only one BEB in each route. In particular,

K :=
n∑
i=1

fiλi +
n∑
i=1

m∑
j=1

gijπij = Obj − cbeb ·m ≤ H,

and this concludes the reduction proof.

We note that one can prove a similar reduction from the UFL to the single period on-route

BEB only OPCF-EBF.

30



2.6 Primal Heuristic Method

The OPCF-EBF model (2.1)-(2.9) turns out to be an extremely challenging large-scale in-

teger linear program. The state-of-the-art commercial solver such as Gurobi cannot obtain

a good feasible solution within a reasonable computation time as will be shown in the

computation part. After explorations of various computation methods, it became evident

the need for primal heuristics to warm-start Gurobi. In this section, we describe a primal

heuristic called the Policy Restriction.

Policy Restriction heuristic.

This heuristic restricts the operation dynamics of depot BEBs to reduce the primal solution

search. Indeed, we denote the set of positive demand time intervals as T servicej,θ = {t ∈ [0 :

T − 1] | dt,θj > 0} and refer to it as the service times. Analogously, we define the set of

zero-demand time intervals as T offj,θ = [0 : T − 1]\T servicej,θ and refer to it as off-service

times.

The Policy Restriction heuristic prevents the depot BEBs from charging at any state s dif-

ferent from the depleted state Wb + 1 during the service times, that is,

zt,θbijk = 0, ∀t ∈ T servicej,θ , s ∈ [2 : Wb], (b, i, j, k, θ) ∈ Bdepot × I × J ×K ×Θ.

It also prevents the depot and on-route BEBs from being idle during service times, with the

exception of depot BEBs when fully charged (s = 1):

vt,θbjs = 0, ∀t ∈ T servicej,θ , s ∈ [2 : (Wb + 1)], (b, j, θ) ∈ Bdepot × J ×Θ,

ṽt,θbjr = 0, ∀t ∈ T servicej,θ , r ∈ R(j), (b, j, θ) ∈ Broute × J ×Θ.

The idea of the above restriction is to use fully charged depot BEBs when it is most con-

venient in terms of cost. Lastly, the number of working depot and on-route BEBs must be
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zero during off-service times t ∈ T offj,θ :

wt,θbjs = 0, ∀t ∈ T offj,θ , s ∈ [1 : Wb], (b, j, θ) ∈ Bdepot × J ×Θ,

w̃t,θbjr = 0, ∀t ∈ T offj,θ , r ∈ R(j), (b, j, θ) ∈ Broute × J ×Θ.

One advantage of the Policy Restriction (Policy-R) heuristic is that it always leads to a

feasible solution.

Proposition 2.6.1. The OPCF-EBF problem with the Policy-R constraints is feasible.

Proof of Proposition 2.6.1. Consider a solution defined as follows:

• Define all the depot infrastructure x and y, depot BEBs η, and the associated opera-

tional variables w, v, and z as zero vectors.

• Define all the on-route infrastructure χ, on-route BEBs η̃, and the associated opera-

tional variables w̃ and ṽ as zero vectors as well.

• Let the conventional buses ξ be such that it satisfies the retirement targets ξθLB,j ≤

ξθj ≤ ξθUB,j and the monotonicity constraints ξθj ≤ ξθ−1
j for all routes j ∈ J , and all

investment periods θ ∈ Θ. Define the working conventional buses φt,θj as zero and

the idle conventional buses σt,θj as ξθj for all time intervals t ∈ [0 : T − 1], routes

j ∈ J , and investment periods θ ∈ Θ.

• Let the demand slack variable ut,θj be equal to dt,θj for all time intervals t ∈ [0 : T−1],

routes j ∈ J , and investment periods θ ∈ Θ.

It is straightforward to check that this solution is feasible. Hence, the OPCF-EBF problem

with Policy Restriction constraints is feasible.
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2.7 Case studies and analysis

Using our OPCF-EBF model, we present in Section 2.7.1 a bus electrification plan for the

Metropolitan Atlanta Rapid Transit Authority (MARTA) of Atlanta and a battery sensitiv-

ity analysis in Section 2.7.2 for bus electrification of the Massachusetts Bay Transportation

Authority (MBTA) of Boston using depot BEBs. In Section 2.7.3, we explain that the par-

ticular operation and fleet sizing for the Atlanta case study is also observed in the analytical

solution of a simplified OPCF-EBF model with a single route, unlimited charging capacity,

depot and on-route BEBs. We highlight in Section 2.7.4 the performance of our primal

heuristic compared to Gurobi over 11 US and 2 non-US cities using real data. We also

describe the cost and infrastructure involved in the transition to an entirely electric fleet

with remarks in terms of fleet operation regarding the bus composition.

2.7.1 Atlanta MARTA case study: Bus electrification plan

The data used in this case study corresponds to a weekday bus schedule and it is based

on the MARTA GTFS file available at [43] from August 2019, before the COVID-19 pan-

demic. In 2019, Atlanta had 110 bus routes, from which there were 115 terminal stops that

could serve as possible locations to install on-route chargers. We assume an installation

capacity of 2 on-route chargers per terminal station where each can serve up to 8 on-route

BEBs each hour.

The bus garages operated by MARTA are taken as potential depot charging sites, with a

total of five garages identified through [44], see the “D” marks in Figure 2.2. We use

geospatial images to estimate the maximum installation capacity of depot chargers in each

depot. The only depot charger considered in this study is a 70kW AC charger that costs

$60.05k. The on-route 325kW DC charger costs $877.59k and both values comprise pur-

chase, installation, and maintenance over 10 years [45].

We consider two models of BEBs in our studies. The first model is the New Flyer 40-foot
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BEB with a 160 kWh battery capacity, 6 hours of operational capacity when fully charged,

and it requires 3 hours to charge using the depot technology. The New Flyer BEB has the

on-route charging capability and costs $943k each. The second model is the BYD 40-foot

BEB with a 351 kWh battery capacity. We assume the BYD BEB has a 12-hour operational

capacity and it requires 6 hours to fully charge. However, the BYD model does not have

the on-route charging capability and it costs $1,093k per unit.

Atlanta bus fleet electrification plan.

The solution of our model gives an annual investment plan in depot and on-route chargers

and BEBs over 10 years, summarized in Table 2.1. The investment plan is guided by the

conventional bus retirement targets based on [46], which is column ‘# Conv. buses” (e.g. -5

means retiring 5 conventional buses). All other columns are from our numerical solution.

Table 2.1: Investment plan for MARTA on charging facilities and bus fleet units.

Year
#

Depot
BEBs

#
On-route

BEBs

#
Conv.
buses

# Depot
chargers

#
On-route
chargers

Invest.
cost

($ Million)

Op. cost
($ Million)

0 2 3 -5 1 2 $6.53 $38.14

1 11 0 -11 5 0 $10.26 $36.76

2 66 6 -72 33 2 $67.18 $36.87

3 46 27 -73 35 13 $72.92 $37.08

4 1 72 -72 2 14 $69.06 $35.71

5 1 27 -28 2 6 $25.94 $34.32

6 0 23 -23 0 3 $19.05 $32.94

7 1 46 -45 0 4 $35.98 $31.72

8 0 50 -49 0 5 $37.21 $30.43

9 19 40 -63 0 11 $45.25 $29.98

Total 147 294 -441 78 60 $389.39 $343.95

One interesting observation from Table 2.1 is that, during the first four years (years 0-
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3), investment is primarily on depot BEBs and chargers, but from year 4 onwards, the

investment shifts towards on-route BEBs and chargers. A similar investment pattern is also

observed in other cities, see Section 2.7.4.

Also from Table 2.1, the replacement factor of the conventional bus fleet is 1, that is, the

total number of retired conventional buses is equal to the total number of the added depot

and on-route BEBs. The yearly investment cost of such an investment plan remains below

$70 million, except in year 3, with the total investment cost equal to $390 million. The

total operational cost over 10 years is comparable to the investment cost.

The spatial distribution of on-route chargers from our numerical solution is depicted in Fig-

ure 2.2. The D markers represent the bus depots, the smallest circles represent the potential

on-route charging locations, while the larger ones are the installed on-route chargers. Gen-

erally, the model suggests the installation of on-route chargers from the area of the greatest

confluence of bus routes in the downtown area towards the periphery of the city as shown in

years 3 and 9 in Figures 2.2b and 2.2c. The illustrations of Figure 2.2 are generated using

the ArcGIS tool, see [47].

(a) Bus transportation network. (b) # Open stations: 16 – year 3. (c) # Open stations: 49 – year 9.

Figure 2.2: Spatial distribution of on-route charge stations for Atlanta.

Operation of the BEB fleet.

To understand how the mixed fleet of BEBs and conventional buses is operated by our

model, we present the number of working depot BEBs, on-route BEBs, and conventional

buses over 24 hours during investment years 3 and 9 in Figure 2.3. From Figure 2.3c,
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we note that the conventional buses meet part of the demand that is essentially constant

throughout the day, named base demand, during investment year 3.

(a) Depot BEBs. (b) On-route BEBs. (c) Conventional buses.

Figure 2.3: Fleet operational dynamics over 24 hours per bus type.

Meanwhile, as seen in Figure 2.3a, the depot BEBs accommodate the rush hours fluctuation

for both years 3 and 9. The most likely explanation is that the depot BEB New Flyer

40ft (160 KWh) is the cheapest option, its 6 hours battery performance is sufficient to

cover each rush wave, and the 3 hours charging time is less than the in-between rush hour

times. We observed that the number of BYD BEBs obtained in the solution is almost zero,

which is possibly due to its purchase cost being slightly higher than the New Flyer (about

16% higher per BEB). The number of on-route BEBs from year 3 is not expressive in

comparison with the total bus demand but in year 9 the on-route BEBs essentially replaced

the conventional bus fleet from year 3, see Figures 2.3b and 2.3c. In summary, we observe

that depot BEBs accommodate the variation in demand during rush hour waves, while on-

route BEBs are responsible for handling the base demand.

2.7.2 Boston MBTA case study: Battery sensitivity analysis

In this section, we present a case study on the Massachusetts Bay Transportation Authority

(MBTA) of Boston, Massachusetts. In the report [48], MBTA pointed out that their elec-

trification strategy considers only depot BEBs and a type of diesel-electric hybrid bus. The

justification for their strategy instead of an entirely electric fleet is that during the winter

season the efficiency of a depot BEB drops to 4 hours of operation due to the use of heaters.

MBTA’s plan is to use hybrid buses to retire most of the old conventional diesel buses in
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order to meet the GHG reduction target set for 2030, [15].

Based on this scenario, we carry out a sensitivity analysis for the MBTA’s 10-year invest-

ment plan, assuming only depot BEBs with battery performance values of 4, 6, 8, 10, and

12 hours, and a charging time of 4 hours. These numbers are based on the assumption that

the insulation system and the battery capacity of electric buses may improve in the near

future. The maximum demand for buses in this case study is 1108 buses and the result is

summarized in Table 2.2. The column “Battery (h)” contains the battery performance in

hours of operations for the depot BEBs; the column “# Depot BEBs” contains the number

of depot BEBs needed to replace the conventional bus fleet, while maintaining the same

level of service; the column “Ratio” is the ratio between the number of depot BEBs and

the number of retired conventional buses; and the column “Opt. Gap” is the optimality gap

of the solution found after 10 hours of computation. Note that the number of depot BEBs

Table 2.2: Sensitivity analysis of the operating capacity depot BEBs for the MBTA case
study.

Battery (h) # Depot BEBs Ratio Opt. Gap
4 1902 1.72 1.30%
6 1638 1.48 2.46%
8 1625 1.47 7.73%

10 1610 1.45 9.02%
12 1518 1.37 8.18%

needed to replace the conventional bus fleet decreases as the battery capacity increases.

To illustrate the need for extra depot BEBs, we present in Figure 2.4 a curve for the total

number of working, charging, and idling depot BEBs with 8 hours of battery capacity.

The curve of working depot BEBs is very close to the bus demand which indicates the

same bus service level. But to compensate for the charging time, the depot BEBs require a

coordinated operation that involves around 27% of the fleet constantly charging and the idle

BEBs to start working at the specific times of day, as can be seen by the first and second

rush waves.

Thus, one cannot expect a replacement ratio equal to 1 using exclusively depot BEBs if their
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Figure 2.4: Depot BEBs’ operational dynamics over 24 hours with a battery capacity of 8
hours.

battery capacity is not enough to operate through the entire service day. On the other hand,

our mixed fleet solution involves a large proportion of on-route BEBs, but the deployment

of such technology may delay the replacement of conventional buses and negatively impact

the GHG reduction goal set for 2030, see [48]. Use of the diesel-electric hybrid buses is

then a reasonable solution.

2.7.3 Analysis of the mixed depot and on-route fleet strategy

In this section, we provide an explanation for the BEB operation of our OPCF-EBF model

through the analytical solution of a simplified model. Consider a simplified fleet sizing

problem with only one route and one investment period, where the chargers and other

infrastructure costs are aggregated into the BEB unit costs. We consider depot and on-

route BEBs only, that is, no conventional buses in our fleet sizing problem. Suppose that in

a coarse time discretization a depot BEB can only work for one time interval and need to

fully charge on a consecutive interval.

Let η, η̃ be the total number of the depot and on-route BEBs with unit costs cd, cr, respec-

tively, and let wt, vt, and zt be the number of working, idling, and charging depot BEBs at

time t. Let w̃t and ṽt be the number of working and idling on-route BEBs, and let dt be the

bus demand at time t. Assume there are no charging or working costs. Then, our simplified

38



fleet sizing model is

min cdη + crη̃

s.t. η = w0 + v0 + z0, η̃ = w̃0 + ṽ0,

wt + vt = zt−1 + vt−1, zt = wt−1, ∀t ∈ [0 : T − 1],

w̃t + ṽt = w̃t−1 + ṽt−1, wt + w̃t ≥ dt, ∀t ∈ [0 : T − 1],

η, η̃, wt, w̃t, vt, ṽt, zt ∈ Z+, ∀t ∈ [0 : T − 1].

(2.15)

The only important quantities to determine the optimal number of depot and on-route BEBs

for (2.15) are D1 := maxt∈[0:T−1] dt and D2 := maxt∈[0:T−1](dt + dt−1) as observed in the

Proposition 2.7.1.

Proposition 2.7.1. For every scenario of unit costs cd and cr, the optimal number of the

depot and on-route BEBs to (2.15) and the corresponding numbers of working BEBs for

each time interval t ∈ [0 : T − 1] is obtained in Table 2.3. The optimal solution of

the variables zt, vt, and ṽt is given by the relations zt = wt−1, vt = η − wt − zt, and

ṽt = η̃ − w̃t.

Table 2.3: Optimal solution table of (2.15) for each objective coefficients cr and cd.

Coeff. η η̃ wt w̃t

cr ≤ cd 0 D1 0 dt

cr ≥ 2cd D2 0 dt 0

cd < cr < 2cd 2D1 −D2 D2 −D1 max{dt +D1 −D2, 0} min{D2 −D1, dt}

Proof of Proposition 2.7.1. We first simplify (2.15) by eliminating the charging variable zt,

and the idling variables vt and ṽt. Indeed, we can replace zt by wt−1 everywhere in (2.15)
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and this leads to the following model:

min cdη + crη̃

s.t. η = w0 + v0 + wT−1, η̃ = w̃0 + ṽ0,

wt + vt = wt−2 + vt−1, ∀t ∈ [0 : T − 1],

w̃t + ṽt = w̃t−1 + ṽt−1, wt + w̃t ≥ dt, ∀t ∈ [0 : T − 1],

η, η̃, wt, w̃t, vt, ṽt ∈ Z+, ∀t ∈ [0 : T − 1].

(2.16)

Note that η = wt + vt +wt−1 is equivalent to wt + vt = wt−2 + vt−1, for all t ∈ [0 : T − 1],

and that η̃ = w̃t + ṽt is equivalent to w̃t + ṽt = w̃t−1 + ṽt−1, for all t ∈ [0 : T − 1]. This

leads to the following equivalent formulation:

min cdη + crη̃

s.t. η = wt + vt + wt−1, η̃ = w̃t + ṽt, ∀t ∈ [0 : T − 1]

wt + w̃t ≥ dt, ∀t ∈ [0 : T − 1],

η, η̃, wt, w̃t, vt, ṽt ∈ Z+, ∀t ∈ [0 : T − 1].

(2.17)

From (2.17), it is straightforward to eliminate the idling variables vt and ṽt. Let vt =

η − wt − wt−1 and ṽt = η̃ − w̃t, and because both variables are non-negative, we have the

formulation below:

min cdη + crη̃

s.t. η ≥ wt + wt−1, η̃ ≥ w̃t, ∀t ∈ [0 : T − 1]

wt + w̃t ≥ dt, ∀t ∈ [0 : T − 1],

η, η̃, wt, w̃t ∈ Z+, ∀t ∈ [0 : T − 1].

(2.18)

The lines of Table 2.3 induce feasible solutions to (2.18) with objectives crD1, cdD2, and
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cr(2D1 −D2) + cd(D2 −D1). Consider the dual of the linear relaxation of (2.18):

max
∑

t∈[0:T−1] d
tφt

s.t.
∑

t∈[0:T−1] πt ≤ cd,
∑

t∈[0:T−1] π̃
t ≤ cr,

−πt − πt+1 + φt ≤ 0, −π̃t + φt ≤ 0, t ∈ [0 : T − 1],

πt, π̃t, φt ≥ 0, t ∈ [0 : T − 1],

(2.19)

and let a, b ∈ [0 : T − 1] be such that D1 = da and D2 = db + db−1. We use the Kronecker

delta vectors δa and δb to define the dual feasible solutions, where

(δa)t :=


1, if t = a,

0, otherwise.

One can check that the lines of Table 2.4 induce feasible solutions to the dual prob-

lem (2.19) with the same objective values crD1, cdD2, and cr(2D1 −D2) + cd(D2 −D1).

Therefore, the solutions of Table 2.3 are optimal to (2.18).

Table 2.4: Optimal solutions of the dual problem (2.19) for each objective coefficients cr
and cd.

Coeff. φt = π̃t πt

cr ≤ cd crδ
a crδ

a

cr ≥ 2cd cd(δ
b + δb−1) cdδ

b

cd < cr < 2cd (2cd − cr)δa + (cr − cd)(δb + δb−1) (2cd − cr)δa + (cr − cd)δb

The following example provides the intuition behind the operational decision of our nu-

merical experiments. Consider a 24-hour partition given by 4 time intervals: early morning

t = 0, morning rush t = 1, inter-rush t = 2, and evening rush t = 3. On this timescale,

it is reasonable to assume that a depot BEB can work during only one time interval and

needs to fully charge in a consecutive interval. Suppose the demand {dt}3
t=0 is such that
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d0 < d2 < d1 < d3 and d3 − d2 < d1 − d0, which is similar to the buses’ rush waves, see

Figure 2.5a. Then, D1 = d3 and D2 = d2 + d3.

It is a reasonable approximation to assume that the deployment of an on-route BEB is more

expensive than that of a depot BEB but less expensive than that of two depot BEBs, i.e.,

cd < cr < 2cd, since the cost of an on-route charger can be divided equally among the

on-route BEBs. This implies that the optimal fleet is η = d3 − d2 and η̃ = d2 and the

optimal working BEBs are given by wt = max{dt − d2, 0} and w̃t = min{d2, dt}, for

each t ∈ [0 : 3], see the illustration of Figure 2.5b. Thus, the optimal operation is to use

on-route BEBs for the base demand and depot BEBs for the rush wave fluctuations. In

reality, the OPCF-EBF solution may suggest more depot BEBs since there may exist many

routes without common terminals, which increases the unit cost cr.

d0

d1

d2

d3

0 1 2 3 4 t

d

(a) Simplified demand.

d0

d1

d2

d3

0 1 2 3 4 t

d

#On-route BEBs

#Depot BEBs

(b) Optimal working BEBs.

Figure 2.5: Bus demand and the optimal number of working BEBs if cd < cr < 2cd.

2.7.4 Multi-city study and analysis

We benchmark the efficiency of the Policy Restriction heuristic with respect to the Gurobi

solver’s internal heuristic over a total execution time of four hours for 17 public transit

systems with 11 US cities and 2 non-US cities, see Table 2.5.

Below are some comments on the results of the heuristics presented in Table 2.5.

Original: The Gurobi solver without warm-start have a gap greater than 90% for 6 of the 16

instances and an average gap of 49.9%, even after four hours of simulation.

Policy-R: The Policy Restriction heuristic has a much lower optimality gap with quite stable
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Table 2.5: Primal heuristics optimality gap after 4 hours of computation.

City
Gurobi

gap
Policy-R

gap

#
Depot
BEBs

# On-
route
BEBs

#
Depot
charg-

ers

# On-
route
charg-

ers

Invest.
cost ($
Mil-
lion)

Chicago 99.71% 7.62% 874 598 380 96 1256.15

Dallas 100.0% 11.23% 251 348 125 52 519.07

Houston 70.55% 8.78% 580 316 156 50 753.65

Las Vegas 3.64% 1.82% 46 233 15 36 249.94

Los Angeles 99.21% 3.00% 1064 706 536 108 1507.30

NY (Bronx) 23.59% 8.23% 655 570 354 80 1046.20

NY
(Brooklyn)

59.15% 8.42% 1481 1461 795 193 2512.65

NY
(Manhatt.)

26.73% 4.32% 525 551 194 80 921.03

NY (Queens) 1.95% 6.08% 595 303 178 45 753.42

NY (St.
Island)

0.32% 0.29% 565 52 105 6 498.63

San
Francisco

3.95% 0.47% 745 572 169 82 1114.21

Seattle 3.61% 2.12% 169 26 29 4 159.01

Philadelphia 99.74% 7.56% 637 387 299 72 914.03

San Jose 7.15% 2.61% 209 198 48 42 406.33

Sydney 99.70% 3.84% 2249 726 838 115 2640.40

Toronto 99.75% 3.35% 982 808 456 154 1638.11

Washington
DC

99.69% 3.24% 869 352 293 93 1058.05

Average Gap 52.85% 4.75%

Std. Gap 43.33% 3.01%
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results overall. All instances of the Policy Restriction heuristic have a gap smaller

than 10% and the average gap is only 4.48%.

Thus, the Policy Restriction heuristic proved to be the most reliable in terms of the opti-

mality gap, which is why we used it in all our case studies. All the numerical experiments

were performed on a cluster with 86 processors Intel Xeon Skylake and 317 Gb of shared

RAM memory.

We also analyze some important stylized facts regarding the Policy-R primal solution. In

Table 2.5 we have the total number of depot BEBs, on-route BEBs, depot chargers, on-

route chargers, and total investment cost to preserve the same bus service level in those

major cities. We assume for all instances a constant budget in every investment year and a

conventional bus target of 0 at the last year.

Figure 2.6: Multicity case study - fleet investment over 10 years.

The proportion of depot and on-route BEBs from Table 2.5 is primarily explained by the

bus demand shape of each instance. Indeed, we show in Figure 2.6 the fleet investment

evolution over 10 years and the BEB operation in year 9 for the cities of Dallas, Houston,

and Las Vegas. We observe that the shape of the bus demand defines base demand which

is fulfilled by on-route BEBs while the depot BEBs supply the difference to cover the bus

service. As a secondary influence, we have the spatial distribution of the routes which may
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hinder the use of on-route chargers and increase the gap between on-route BEBs and the

base demand, see Houston in Figure 2.6.

In the investment fleet evolution from Figure 2.6, we note the preference for depot BEBs

in the early investment years until a saturation point and then the investment in on-route

BEBs. This observation is consistent with the intuition that depot BEBs are cheaper to

deploy than on-route BEBs and because of the constant discount factor γθ ∈ {0, 1} depot

BEBs should be invested first. See Proposition 2.7.2 for a mathematical explanation of the

role of the discount factor in ordering decisions.

Proposition 2.7.2. Let c1 < c2 < · · · < cn and 0 < β < 1 be given. Let π : [n] → [n]

denote a permutation, i.e. a bijection, where [n] := {1, 2, . . . , n}. Then, the following

minimization problem

min
π:[n]→[n]

π permutation

n∑
θ=1

βθ−1cπ(θ)

has a unique optimal solution given by the identity permutation π∗(θ) = θ for all θ ∈ [n].

That is, the minimum sum of a sequence of distinct numbers discounted by β is achieved by

the increasing ordering of the numbers.

Proof of Proposition 2.7.2. The solution to this problem can be find by induction. Indeed,

the case n = 1 and n = 2 are trivial. Given a permutation π, we create another permuta-

tion π̂ by swapping two numbers:

π̂(i) =


n, if i = n,

π(n), if i = π−1(n),

π(i), if i 6= n, π−1(n).

Note that the new permutation π̂ is identical to the original permutation π except at two

places: π̂(n) = n, whereas π(n) = i, and π̂(i) = π(n), whereas π(i) = n.
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Let r = π−1(n), and note that

cπ̂(r) · βr−1 + cπ̂(n) · βn−1 < cπ(r) · βr−1 + cπ(n) · βn−1,

⇐⇒ cπ(n)β
r−1 + cn · βn−1 < cn · βr−1 + cπ(n) · βn−1,

⇐⇒ βn−1(cn − cπ(n)) < βr−1(cn − cπ(n)),

where the last inequality holds since n is greater than r. Therefore,

n−1∑
i=1

cπ̂(i)β
i−1 + cnβ

n−1 <

n∑
i=1

cπ(i)β
i−1,

and because π̂ restricted to [n− 1] defines a permutation in [n− 1], we conclude the result

by the induction hypothesis:

n−1∑
i=1

ciβ
i−1 + cnβ

n−1 <
n∑
i=1

cπ(i)β
i−1.

2.8 Conclusions

In this paper, we proposed a novel investment planning model for the electrification of bus

fleets and the building up of charging infrastructure for public transit systems. We present

two real-world case studies and a multi-city analysis that demonstrate the effectiveness of

our model. In the Atlanta case study, we presented an investment plan that achieves a 1:1

replacement ratio of conventional buses and sheds light on the operation of a bus fleet in

transition. In the Boston case study, we assessed the sensitivity of the bus electrification

plan with regard to BEB charging times, motivated by the significant weather-induced bat-

tery performance change in Boston winters. In the multi-city analysis, we observed that the

proportion of depot and on-route BEBs is primarily dictated by the shape of the total bus

demand curve. We proved that the OPCF-EBF model is NP-hard from a reduction of the
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UFL problem. We developed the “Policy-Restriction” primal heuristic, which significantly

outperformed Gurobi without warm-start in all of our instances. Overall, the proposed

model, algorithms, and analysis provide a valuable tool to facilitate public transit author-

ities to carry out one of the most important and challenging tasks facing modern society,

namely to electrify transportation in a timely and efficient manner.
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CHAPTER 3

A POLYNOMIAL TIME SOLVABLE CLASS: THE FLEET SIZING PROBLEM

3.1 Introduction

According to Theorem 2.5.1, the growing numbers of bus routes and charging depots lead

to computational intractability of OPCF-EBF, even with a single investment period and two

battery states. In this chapter, we explore another dimension of the model with only one

bus route and only depot BEBs, but an arbitrary number of battery states. We call this a

fleet-sizing problem.

We show that, under a simple non-preemptive charging strategy with no early charging and

idling, the fleet-sizing problem is polynomially solvable. The proof of this fact relies on

the “almost” total unimodular nature of the constraint matrix for the operation problem

given the number of depot BEBs. We also rely on a proximity result that quantifies the

distance of the optimal solution to the linear relaxation solution η∗,LR. The polynomial-

time complexity follows from the solution of a fixed number of linear programs.

Consider the following fleet sizing problem:

min
η

∑
θ∈Θ

cθη · ηθ + F̃θ(η
θ) (3.1a)

s.t. ηθ−1 ≤ ηθ, ηθLB ≤ ηθ ≤ ηθUB, ηθ ∈ Z+, θ ∈ Θ. (3.1b)

Here, F̃θ(ηθ) is the operational cost of a depot BEB fleet of size ηθ during the investment
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period θ, which is given by the following operational problem

F̃θ(η
θ) = min

w,z

∑
t∈[0:T−1]

(
W∑
s=1

pt,θw,s · wt,θs + pt,θz · zt,θ
)

(3.2a)

s.t.
W∑
s=1

w0,θ
s +

L−1∑
l=0

z−l,θ = ηθ, (3.2b)

wt,θ1 = zt−L,θ, wt,θs = wt−1,θ
s−1 , zt,θ = wt−1,θ

W , t ∈ [0 : T − 1], (3.2c)

W∑
s=1

wt,θs ≥ dt,θ, t ∈ [0 : T − 1], (3.2d)

wt,θs , z
t,θ ∈ Z+,

t ∈ [0 : T − 1],

s ∈ [1 : W ].
(3.2e)

The objective in (3.2a) is to minimize the total working and charging costs, subject to the

total number of depot BEBs equal to ηθ in (3.2b), the simple operation policy (3.2c) that

requires a bus to work non-stop until it reaches the depleted battery state W (i.e. no early

charging), that is, a bus must start charging and resume operation immediately after it is

fully charged (i.e. non-preemptivie and no idling), and the working buses must meet the

demand constraint (3.2d).

3.2 Contributions

1. Tight LP relaxation of the operation problem: The coefficient matrix of the op-

eration problem may not be totally unimodular (TU). However, interestingly, by ex-

ploiting the rich symmetry imposed by the non-preemptive charging policy and the

modular arithmetic, we can reformulate and unimodularly transform the operation

problem to an equivalent formulation that does have the TU property.

2. The fleet sizing problem as a Separable Convex Integer Program:

(a) Using the previous result, we extend the value function of the operation prob-

lem to an extended-real-valued convex piecewise linear function. Thus, the
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fleet sizing problem is essentially a separable convex integer program (SCIP),

separable over the investment periods.

(b) Underlying this result is a proximity theorem proved for general SCIP that an

optimal integer solution of SCIP belongs to the integer lattice of a ball centered

at the LP relaxation’s optimal solution. The key result shows that the search

over the integer lattice can be further reformulated as a new integer linear pro-

gram, which has an exact LP relaxation.

(c) Finally in the last step, we bound the number and size of all the LPs involved,

and refer to the arithmetic complexity of an algorithm of Vaidya [12] to con-

clude the polynomial-time complexity of the fleet sizing problem.

3. The Dyadic Contiguous Row (DCR) matrix: We introduce a special class of sep-

arable integer program with totally unimodular constraints that can serve as a two

stage decomposition method to prove polynomial solvability. In fact, we define the

notion of a Dyadic Contiguous Row (DCR) matrix which extends the definition of

a row-circular matrix of Bartholdi [6]. Given that the second stage integer program

has a DCR coefficient matrix, the same complexity analysis performed for the fleet

sizing problem applies.

The Chapter 3 is organized as follows. In Section 3.3, we describe the key ideas and results

that motivated our polynomial-time algorithm for the fleet sizing problem (3.1). We prove

in Section 3.3.1 that the operational problem value function F̃θ(ηθ) can be extended to a

tight piecewise linear convex function. In Section 3.3.2, we prove the correctness of a

proximity-based reformulation which is the cornerstone of our polynomial-time algorithm.

In Section 3.3.3, we bound the size of the intermediate linear programs and prove the

complexity of our algorithm.
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3.3 A polynomial time algorithm for the Fleet Sizing Problem

We outline the results that prove the polynomial solvability of the fleet sizing problem (3.1).

The building blocks of our polynomial-time algorithm are the Lemma 3.3.1 that provides

key properties of the value function F̃θ and the proximity-based reformulation (3.6) which

is a type of binarization based on the closedness of optimal integral and linear relaxation

solutions for a class of Separable Integer Convex Programs. We state our polynomial-time

algorithm, Algorithm 1, and summarize the computational complexity necessary to solve

all the intermediate linear programs and find the optimal integral solution to (3.1).

Lemma 3.3.1. The domain of F̃θ is contained in the set of multiples of (W +L)/k, where k

is the greatest common divisor of W + L and T :

dom(F̃θ) ⊆
{
i(W + L)

k
∈ Z

∣∣∣∣ i ∈ Z
}
. (3.3)

In particular, the linear relaxation of (3.2) is a tight convex lower approximation of F̃θ(ηθ).

Lemma 3.3.1 motivates the change of variables ηθ = W+L
k
· ηθ. Let the new objective

cost be cθη = W+L
k
cθη, let the new lower and upper bounds be ηθLB =

⌈
ηθLB · k

W+L

⌉
and

ηθUB =
⌊
ηθUB · k

W+L

⌋
, and let the new value function be F θ(η

θ) = F̃θ

(
W+L
k
· ηθ
)

. Thus,

the original fleet sizing problem (3.1) can be reformulated as

min
η

∑
θ∈Θ

cθη · ηθ + F θ(η
θ) (3.4a)

s.t. ηθ−1 ≤ ηθ, ηθLB ≤ ηθ ≤ ηθUB, ηθ ∈ Z+, θ ∈ Θ. (3.4b)

The main difference between (3.1) and (3.4) is that the domain of F θ is a subset set of the

integers instead of the multiples of (W + L)/k.

Also from Lemma 3.3.1, we extend the value function F̃θ to a convex function using the

linear relaxation of (3.2). So, without loss of generality, we assume that F̃θ is a polyhedral
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function (proper piecewise linear convex function). This implies that (3.4) is a Separa-

ble Convex Integer Program over totally unimodular constraints. This additional structure

allows us to use a Proximity Theorem to significantly restrict the search for an optimal

integral solution.

Indeed, we obtain the optimal solution to (3.4) by formulating an auxiliary problem that

works as a local search. Let η∗,LR be an optimal solution to the linear relaxation of (3.4),

where F θ(·) is extended to fractional values of ηθ by considering the linear relaxation

of (3.2). Let hθLB and hθUB be the minimum and maximum integer h ∈ [0 : 2|Θ|] such that

F θ(bηθ∗,LRc − |Θ|+ h) <∞, respectively, and let qθδ,h be the cost vector defined as

qθδ,h =


F θ(bηθ∗,LRc − |Θ|+ hθLB), if h = hθLB,

F θ(bηθ∗,LRc − |Θ|+ h)− F θ(bηθ∗,LRc − |Θ|+ h− 1), if h ∈ [hθLB + 1 : hθUB],

0, if h /∈ [hθLB : hθUB],

(3.5)

for all h = 0, . . . , 2|Θ|, and θ ∈ Θ. Theorem 3.3.1 guarantees that a binarization of the

infinity norm ball of radius 2|Θ| centered at η∗,LR contains the optimal solution for (3.4)

and the corresponding reformulation also has a total unimodular coefficient matrix.

Theorem 3.3.1. The separable convex integer program (3.1) can be reformulated as the
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following integer linear program:

min
η,δ

∑
θ∈Θ

(
cθη · ηθ +

2|Θ|∑
h=0

qθδ,h · δθh
)

(3.6a)

s.t. ηθ−1 ≤ ηθ, ηθLB ≤ ηθ ≤ ηθUB, θ ∈ Θ, (3.6b)

ηθ −
2|Θ|∑
h=0

δθh = bηθ∗,LRc − |Θ| − 1, θ ∈ Θ, (3.6c)

δθh = 1, h ∈ [0 : hθLB], θ ∈ Θ, (3.6d)

δθh = 0, h ∈ [hθUB + 1 : 2|Θ|], θ ∈ Θ, (3.6e)

ηθ ∈ Z+, δ
θ
h ∈ {0, 1}, h = 0, . . . , 2|Θ|, θ ∈ Θ. (3.6f)

In particular, an optimal solution (η∗, δ∗) to (3.6) exists if and only if an optimal solution

to (3.1) exists. The constraint matrix induced by (3.6b)-(3.6f) is totally unimodular.

It follows from Theorem 3.3.1 that the fleet sizing problem (3.6) is polynomially solv-

able since the constraint matrix is totally unimodular. See Algorithm 1 for the complete

description of the Proximity algorithm.

Algorithm 1 Proximity Algorithm

1: Find an optimal basic feasible solution (η∗,LR, ζ∗,LR) to the linear relaxation of (3.4).
2: for θ ∈ Θ do
3: for h = 0, 1, . . . , 2|Θ| do
4: Let ηθ = bηθ∗,LRc − |Θ| − 1 + h

5: Compute the optimal value F θ(η
θ) = F̃θ

(
W+L
k
· ηθ
)

of problem (3.2).
6: Define qθδ,h according to the expression (3.5).

7: Solve the proximity problem (3.6) using qθδ,h and bηθ∗,LRc as inputs.
8: return an optimal fleet size η∗ = W+L

k
· η∗.

The time complexity of the Proximity algorithm is O
(
(k3|Θ|3 + |Θ|6)L

)
, as described in

Theorem 3.3.2, where L is the size of the integer programming instance (3.1) as defined in

Section 3.3.3, Equation (3.37).
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Theorem 3.3.2. The time complexity to obtain an optimal integral solution η∗ to (3.1) using

the Algorithm 1 is O
(
(k3|Θ|3 + |Θ|6)L

)
arithmetic operations at a precision of O(L) bits.

3.3.1 Properties of the Operational Problem with Simple Charging Policy

We detail in this section the intermediate results that lead to the proof of Lemma 3.3.1.

The first is a variable reduction reformulation implied by the battery state transition and

recharging equations (3.2c). In this reformulation, we introduce a new variable with a

different equivalence class index which is induced by the greatest common divisor of (W +

L) and T . The new index refers to the possible alignments between BEB operation plus

charging cycles and the periodic planning horizon. Then, we provide a symmetry breaking

unimodular transformation which reveals the almost TU property of the constraint matrix

in our second reformulation. Since all the transformations are one-to-one and preserve

integrality we conclude Lemma 3.3.1.

Below, we have our variable reduction reformulation for the operational problem (3.2).

Lemma 3.3.2 (Variable Reduction). Let k be the greatest common divisor of (W + L)

and T . The problem (3.2) is equivalent to the following model in ζ variables only

F̃ (η) = min
ζ

k−1∑
i=0

pζ,i · ζi (3.7a)

s.t.
k−1∑
i=0

ζi =
k

W + L
· η, (3.7b)

W−1∑
l=0

ζi−l ≥ d̃i, i ∈ [0 : k − 1], (3.7c)

ζi ∈ Z+, i ∈ [0 : k − 1], (3.7d)

where the ζ indexes i’s are equivalence classes modulo k. The coefficients pζ,i and d̃i are
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defined as

pζ,i =
∑

t∈[0:T−1]
t%k=i

[
ptz +

∑
τ∈[0:T−1], s∈[1:W ],

s.t. τ−s−L+1=t.

pτw,s

]
, and d̃i = max

t∈[0:T−1]

t%k=i

dt+L, (3.8)

for all i ∈ [0 : k−1], and t%k represents the remainder of t divided by k. The map between

the feasible solutions from problem (3.7) and the original operational problem (3.2) is given

by the relation

zt = ζt%k, and wts = zt−s−L+1, (3.9)

for all s ∈ [1 : W ] and t ∈ [0 : T − 1]. In particular, the fleet size η must be a multiple

of (W + L)/k, otherwise the original operational problem (3.2) is infeasible.

Proof of Lemma 3.3.2. First, it follows from (3.2c) that wts = zt−s−L+1 for all charge

states s ∈ [1 : W ] and time intervals t ∈ [0 : T − 1]. This reduces the original opera-

tional problem (3.2) to the following:

F̃ (η) = min
z

∑
t∈[0:T−1]

p̃tz · zt (3.10a)

s.t.
L+W−1∑
l=0

z−l = η (3.10b)

zt = zt−W−L, t ∈ [0 : T − 1], (3.10c)

W−1∑
l=0

zt−l−L ≥ dt, t ∈ [0 : T − 1], (3.10d)

zt ∈ Z+, t ∈ [0 : T − 1], (3.10e)

where the cost vector p̃z is defined as

p̃tz = ptz +
∑

τ∈[0:T−1], s∈[1:W ],
s.t. τ−s−L+1=t.

pτw,s, (3.11)

for all t ∈ [0 : T − 1].
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The equality constraint (3.10c) creates a symmetry, i.e. a periodicity of W + L, on the

z-variable space. Moreover, recall that t is an equivalence class modulo T , so t + yT is

equal to t for all y ∈ Z. This fact together with the constraint (3.10c) implies the equality

zt = zt+x·(W+L)+y·T , (3.12)

for every x, y ∈ Z, and every t ∈ [0 : T − 1]. By the Bezout’s identity, there are integers x

and y such that k = x · (W +L)+y ·T , where k is the greatest common divisor of (W +L)

and T , and k is also the smallest positive integer given by any integral combination of

(W +L) and T . Thus, the number of distinct z variables is k, and the constraint (3.12) can

be equivalently represented as zt = zt+a·k, for every a ∈ Z and every t ∈ [0 : T −1]. Let ζi

be defined as ζi = zi for all i ∈ [0 : k − 1]. Because of the identity zt = zt+a·k, we have

that

zt = ζt%k, (3.13)

so the total fleet constraint (3.10b) can be described in terms of ζ as

η =
W+L−1∑
l=0

z−l =

(W+L)
k
·k−1∑

l=0

ζ(−l)%k =
(W + L)

k
·
k−1∑
i=0

ζl. (3.14)

The demand constraint (3.10d) in terms of the variables ζ becomes
∑W+L−1

l=L ζ(t−l)%k ≥ dt

for all t ∈ [0 : T − 1]. So, by the change of variable t := t+ L, and by taking a maximum

of the right-hand side demand dt+L over t ∈ [0 : T − 1] modulo k, i.e., t%k = i, we obtain

the following expression:

W−1∑
l=0

ζi−l ≥ max
t∈[0:T−1]

t%k=i

dt+L, (3.15)

for all t ∈ [0 : T − 1]. Finally, the cost pζ,i follows from (3.11) similarly by adding p̃tz

over t ∈ [0 : T − 1] modulo K that is, pζ,i =
∑

t∈[0:T−1]
t%k=i

p̃tz, for all i ∈ [0 : k − 1].
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Although the reduced problem (3.7a) has a simpler structure compared to the original op-

erational model (3.2), the new demand constraint (3.7c) is inconvenient to analyze. Indeed,

the wraparound property of the indexes i’s leads to a complicated expression for the sum-

mation
∑W−1

l=0 ζi−l in terms of ζ0, ζ1, . . . , ζk−1 with coefficients that may be greater than 1.

In order to improve the analysis we perform a symmetry-breaking transformation, this time

with a unimodular linear transformation R : Rk → Rk defined as

(Rζ)i =
i∑
l=0

ζl, ∀0 ≤ i ≤ k − 1. (3.16)

Note that its inverse R−1 is given by the formula

(R−1ζ)i =


ζ0, if i = 0,

ζ i − ζ i−1, if 1 ≤ i ≤ k − 1.
(3.17)

Recall that a matrix is called unimodular if it is a square integral matrix with determi-

nant +1 or −1. The unimodularity property holds for R since it is an integral lower trian-

gular matrix with ones in its main diagonal.

Lemma 3.3.3 (Unimodular transformation). The change of variables ζ := Rζ applied to

the reduced operational problem (3.7) results in the following problem:

F̃ (η) = min
ζ

k−1∑
i=0

pζ,i · ζ i (3.18a)

s.t. ζk−1 =
k

W + L
· η, (3.18b)

ζ i − ζ i−W +

(⌊
W

k

⌋
+ I[i+1,∞)(W%k)

)
ζk−1 ≥ d̃i, (3.18c)

i ∈ [0 : k − 1],

ζ0 ≥ 0, (3.18d)

ζ i − ζ i−1 ≥ 0, i ∈ [1 : k − 1], (3.18e)

ζ i ∈ Z, i ∈ [0 : k − 1], (3.18f)
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where I[i+1,∞)(x) is the indicator function that is 1 if x is greater than or equal to i + 1,

and 0 otherwise, and the cost coefficient pζ,i is defined as

pζ,i =


pζ,i − pζ,i+1, if 0 ≤ i ≤ k − 2,

pζ,k−1, if i = k − 1,
(3.19)

for all i ∈ [0 : k − 1]. In particular, the polyhedron defined by the linear relaxation of

(3.18) is integral whenever η is a multiple of (W + L)/k. So, the linear relaxation value

function F̃ (η) is an extended real-valued convex piecewise linear function for continuous

values of η.

Proof of Lemma 3.3.3. Because ζi = ζ i − ζ i−1, for every i ∈ [1 : k − 1], and ζ0 = ζ0. we

can describe the left-hand side of the constraint (3.7b) as
∑k−1

i=0 ζi = ζ0+
∑k−1

i=1 (ζ i−ζ i−1) =

ζk−1. Similarly for the left-hand side of (3.7c). Indeed,

W−1∑
l=0

ζi−l =

kbWk c−1∑
l=0

ζi−l +
W−1∑

l=kbWk c
ζi−l (3.20a)

=

⌊
W

k

⌋ (
ζi + ζi−1 + · · ·+ ζ0 + ζk−1 + ζk−2 + · · ·+ ζi+1

)
(3.20b)

+
W−1∑

l=kbWk c
ζi−l

=

⌊
W

k

⌋
ζk−1 +

W−1∑
l=kbWk c

ζi−l. (3.20c)

Since any integer W can be described as W = k
⌊
W
k

⌋
+ W%k, we have the following

equalities for
∑W−1

l=kbWk c ζi−l:

W−1∑
l=kbWk c

ζi−l =
W%k−1∑
l=0

ζi−l =


ζ i − ζ i−W%k, if W%k ≤ i,

ζ i − ζ i−W%k + ζk−1, if W%k ≥ i+ 1,
(3.21)
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where the last equality follows from noting that the term ζk−1 is added to the final ex-

pression whenever ζ0 appears in a consecutive summation. The expression (3.18c) follows

from (3.21) because of the identity i − W%k = (i − W )%k and that we can drop the

remainder operator % since the indexes of ζ and ζ are equivalence classes modulo k. The

expression (3.19) for the objective cost is straightforward.

Finally, we prove that the linear relaxation polyhedron induced by (3.18b)-(3.18f) is inte-

gral whenever η is a multiple of (W + L)/k. Indeed, the last variable ζk−1 is fixed and

equal to k
W+L

· η, so we can replace it in every occurrence of ζk−1, which leads to an

integral right-hand side vector. We conclude the integrality of the linear relaxation polyhe-

dron by noting that the constraint matrix associated to the variables ζ0, . . . , ζk−2 is totally

unimodular since it has at most one +1 and −1 at each row.

We can now prove Lemma 3.3.1 using the properties of the reformulations.

Lemma 3.3.1. The domain of F̃θ is contained in the set of multiples of (W +L)/k, where k

is the greatest common divisor of W + L and T :

dom(F̃θ) ⊆
{
i(W + L)

k
∈ Z

∣∣∣∣ i ∈ Z
}
. (3.3)

In particular, the linear relaxation of (3.2) is a tight convex lower approximation of F̃θ(ηθ).

Proof of Lemma 3.3.1. From Lemmas 3.3.2 and 3.3.3, we know that the feasible solutions

of the original operational problem (3.2) have a one-to-one correspondence with the fea-

sible solutions of the reformulated model (3.18). So, it is straightforward to note that the

original operational problem is infeasible when ηθ is not a multiple of (W + L)/k, which

proves the inclusion (3.3).

Denote the polyhedron defined by the linear relaxation of the constraints (3.2b)-(3.2e) as

Pθ(η
θ). Then Pθ(ηθ) is integral if and only if the minimum of

min
(w,z)∈Pθ(ηθ)

p>ww + p>z z (3.22)
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is either integral or −∞, for every pw ∈ ZW×T and pz ∈ ZT . Using the variable reduction

map from Lemma 3.3.2 and the unimodular change of variables from Lemma 3.3.3, we

have that (3.22) can be the reduced to the following problem:

min
ζ

k−1∑
i=0

pζ,i · ζ i (3.23a)

s.t. (3.18b)− (3.18e) (3.23b)

ζ i ≥ 0, i ∈ [0 : k − 1]. (3.23c)

Since pζ,i is integral whenever ptw,s and ptz are integral, and the constraints (3.18b)-(3.18e)

induce an integral polyhedron by Lemma 3.3.3, we conclude that the optimal value of (3.22)

is integral or −∞.

3.3.2 The Proximity Reformulation for Separable Convex Integer Programs

In this section, we address the proximity based reformulation stated in Theorem 3.3.1. In

fact, such auxiliary problem is inspired by a proximity result for the class of Separable

Convex Integer Programs with Totally Unimodular constraints which guarantees that an

infinity-norm ball of radius n and centered in any linear relaxation solution contains an

integral optimal solution, where n is the variable space dimension. The proximity-based

reformulation (3.4) is a binarization of the variables space to represent the integral lattice

inside the infinity-norm ball. Also, the reformulation (3.4) is an integral linear program.

This implies that if the evaluation of the separable objective function takes a polynomial

number of arithmetic operations and the corresponding feasible region is a polytope then

Theorem 3.3.1 implies that the Separable Convex Integer Program with Totally Unimodular

constraints is polynomially solvable.

Let {fi}ni=1 be univariate real-valued convex functions, and consider the following separa-
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ble convex integer programming problem:

min
n∑
i=1

fi(yi) (3.24a)

s.t. Ay ≥ b, (3.24b)

y ∈ Zn, (3.24c)

where A is a totally unimodular (TU) matrix, and b is an integer vector. The goal of this

section is to prove that we can use the linear relaxation to perform an efficient local search

for an optimal integral solution. We assume the minimum of the linear relaxation of the in-

teger program (3.24) exists and it is attainable. The feasibility of the integer program (3.24)

is implied by the feasibility of the corresponding linear relaxation and the fact that A is TU

and b is integral.

Even extended real-valued functions fit the scope of the program (3.24). Let fi be an

extended real-valued proper convex function of the form:

fi(x) =


gi(x), if x ∈ [ai, bi],

+∞, otherwise,
(3.25)

where gi(x) is a univariate real-valued convex function. A relevant example of such a func-

tion is the polyhedral function F θ(·). Indeed, if {fi}ni=1 are extended real-valued convex

functions such as (3.25) we can reformulate (3.24) as follows:

min
n∑
i=1

gi(yi) (3.26a)

s.t. Ay ≥ b, (3.26b)

dae ≤ y ≤ bbc, (3.26c)

y ∈ Zn. (3.26d)
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Note that the constraint matrix induced by (3.26b)-(3.26c) is still TU, and the right-hand

side vectors are still integral.

Theorem 3.3.3 (Proximity Theorem for Separable Convex Integer Programs). Suppose {fi}ni=1

are convex proper real-valued functions and let y∗ and w∗ be optimal integral and contin-

uous linear relaxation (LR) solutions to (3.24), respectively. Then,

1. there exists an optimal integral solution ŷ to (3.24) such that ‖ŷ − w∗‖∞ ≤ n.

2. there exists an optimal LR solution ŵ to (3.24) such that ‖y∗ − ŵ‖∞ ≤ n.

Proof to Theorem 3.3.3. A slightly more general statement along with its proof can be

found in [5].

The next result provides a method to solve separable convex integer programs assuming that

the summation terms {fi}ni=1 are cheap to evaluate. Let hi,LB and hi,UB be the minimum

and maximum index h ∈ {0, 1 . . . , 2n} such that fi(bw∗i c − n + h) < +∞, respectively,

and let qi,h be the following objective cost:

qi,h =


fi(bw∗i c − n+ hi,LB), if h = hi,LB,

fi(bw∗i c − n+ h)− fi(bw∗i c − n+ h− 1), if h ∈ [hi,LB + 1, hi,UB],

0, if h /∈ [hi,LB, hi,UB],

(3.27)

for every i ∈ [1 : n] and h ∈ [0 : 2n]. The cost vector q defined in (3.27) provides a

linearization of the objective function at integral points y such that ‖y − w∗‖∞ ≤ n.

Theorem 3.3.4 (Solution of separable convex integer program). Suppose that {fi}ni=1 are

extended real-valued proper convex functions. Let w∗ be an optimal solution to the linear

relaxation of (3.24), and let hi,LB, hi,UB, and qi,h be the constants defined previously. Then,
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the separable convex integer program (3.24) can be reformulated as follows:

min
y,δ

n∑
i=1

2n∑
h=0

qi,h · δi,h (3.28a)

s.t. Ay ≥ b, (3.28b)

yi −
2n∑
h=0

δi,h = bw∗i c − n− 1, i ∈ [1 : n], (3.28c)

δi,h = 1, h ∈ [0 : hi,LB], i ∈ [1 : n], (3.28d)

δi,h = 0, h ∈ [hi,UB + 1 : 2n], i ∈ [1 : n], (3.28e)

yi ∈ Z+, δi,h ∈ {0, 1}, h ∈ [0 : 2n], i ∈ [1 : n]. (3.28f)

In particular, an optimal solution (y∗, δ∗) to (3.28) exists if and only if an optimal solution

to (3.24) exists. The constraint matrix of the integer program (3.28) is totally unimodular,

therefore, it is sufficient to solve the linear relaxation of (3.28).

Proof of Theorem 3.3.4. First, note that constraints (3.28c) and (3.28f) imply that any so-

lution y ∈ Zn is such that ‖y − w∗‖∞ ≤ n, where the infinite norm is defined as ‖a‖∞ =

maxi∈[1:n] |ai|. By definition of the qi,h, we note that

fi (bw∗i c − n+ h) =
k∑

h=0

qi,h, (3.29)

for each h ∈ [hi,LB, hi,UB] and i ∈ [1 : n]. Because fi is convex and univariate, the

slopes of fi are non-decreasing functions, so the sequence {qi,h} is non-decreasing over h ∈

[hi,LB+1 : hi,UB], for every i ∈ [1 : n]. This proves that among all possible representations

of fi (bw∗i c − n+ h) as the binary variable encoding
∑2n

h=0 qi,h · δi,h the one with least
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objective cost is the right-hand side of (3.29). Thus, the formulation (3.28) is equivalent to

min
y

n∑
i=1

fi(yi) (3.30a)

s.t. ‖y − w∗‖∞ ≤ n, (3.30b)

(3.24b)− (3.24c), (3.30c)

and we know from Theorem 3.3.3 that an optimal solution to (3.30a) is also optimal

to (3.24).

Recall that the constraint matrix A defined by the constraint (3.24b) is totally unimodular

(TU), and by appending any canonical vector to columns or rows of a TU matrix, we

preserve the TU property. Since the constraint matrix formed by (3.28b) and (3.28c) can

be represented as

Ã =

η δ0 · · · δ2n A 0 · · · 0

I −I · · · −I
, (3.31)

where δh := (δi,h)
n
i=1, for all h ∈ [0 : 2n], we conclude that Ã is also TU. It is straightfor-

ward to see that all the other constraints coefficients when appended to Ã preserves the TU

property.

Note that Theorem 3.3.4 contains the statement of Theorem 3.3.1 as a particular case.

Theorem 3.3.1. The separable convex integer program (3.1) can be reformulated as the
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following integer linear program:

min
η,δ

∑
θ∈Θ

(
cθη · ηθ +

2|Θ|∑
h=0

qθδ,h · δθh
)

(3.6a)

s.t. ηθ−1 ≤ ηθ, ηθLB ≤ ηθ ≤ ηθUB, θ ∈ Θ, (3.6b)

ηθ −
2|Θ|∑
h=0

δθh = bηθ∗,LRc − |Θ| − 1, θ ∈ Θ, (3.6c)

δθh = 1, h ∈ [0 : hθLB], θ ∈ Θ, (3.6d)

δθh = 0, h ∈ [hθUB + 1 : 2|Θ|], θ ∈ Θ, (3.6e)

ηθ ∈ Z+, δ
θ
h ∈ {0, 1}, h = 0, . . . , 2|Θ|, θ ∈ Θ. (3.6f)

In particular, an optimal solution (η∗, δ∗) to (3.6) exists if and only if an optimal solution

to (3.1) exists. The constraint matrix induced by (3.6b)-(3.6f) is totally unimodular.

Proof of Theorem 3.3.1. The proof is a direct application of Theorem 3.3.4.

Thus, Theorem 3.3.1 guarantees the correctness of Algorithm 1.

3.3.3 Problem Size and Polynomial Solvability

In this section we prove the polynomial-time complexity from Theorem 3.3.2. We intro-

duce the size of a mixed-integer linear program and bound the size of all the intermediate

linear programs from Algorithm 1. We use the interior point algorithm from [12] to quan-

tify the number of arithmetic operations necessary to find an optimal basic feasible solution

of a bounded linear program. We conclude the time complexity from Theorem 3.3.2 by

counting the number of required optimal basic feasible solutions.
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Consider a mixed-integer linear program with integral coefficients:

min c>x

s.t. Ax ≤ b,

x ∈ Rn−k × Zk,

(3.32)

where c ∈ Zn, A ∈ Zm×n, and b ∈ Zm. All our integer program formulations of this

chapter have integral coefficient matrices and the right-hand side vectors. The objective

coefficients can be converted to integral numbers if one multiplies the denominator of each

rational coefficient by the least common multiple among all denominators.

Suppose the feasible set P = {x ∈ Rn | Ax ≤ b} is a non-empty polytope. Let ∆ be the

largest absolute value of the determinant of a submatrix ofA. We define the size of (3.32) as

L = log2(∆ + 1) + log2

(
max
j∈[n]
|cj|+ 1

)
+ log2

(
max
i∈[m]
|bi|+ 1

)
+ log2(m+ n). (3.33)

The following lemma provides a bound for any basic feasible solution and associated ob-

jective cost c>x∗ using the size L.

Lemma 3.3.4. Any basic feasible solution x∗ to (3.32) and associated objective cost c>x∗

have upper bounds

‖x∗‖∞ ≤ 2L, |c>x∗| ≤ 22L. (3.34)

Proof of Lemma 3.3.4. If x∗ is a basic feasible solution then it is a solution to the linear

system Hx = g, where H ∈ Zn×n is a nonsingular submatrix of A and g ∈ Zn is a

subvector of b. From the Cramer’s rule, we have that

xj =
detHj

detH
,

where Hj is the matrix formed by replacing the j-th column of H by g. We bound the
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determinant of Hj by using the Cofactor expansion formula for the j-th column of H .

Indeed, detHj =
∑n

i=1(−1)i+jgi detH i
j , where H i

j is the matrix obtained from Hj by

eliminating the i-th row and j-th column. Thus,

| detHj| ≤
n∑
i=1

|gi|| detH i
j| ≤

n∑
i=1

|gi|∆ ≤ 2

(
log2(∆+1)+log2(‖g‖∞+1)+log2(n)

)
≤ 2L.

Because the matrix H is integral and nonsingular, we have that | detH| ≥ 1. This implies

that |xj| = | detHj|/| detH| ≤ 2L for all j ∈ [n].

For the objective cost, we have that

|c>x| ≤
n∑
j=1

|cj||xj| ≤ ‖c‖∞
n∑
j=1

|xj| ≤ ‖c‖∞n2L ≤ 2

(
log2(‖c‖∞+1)+log2(n)+L

)
≤ 22L.

We now define the size of fleet sizing instance (3.4). First, we formulate (3.4) as an inte-

ger program by expanding the value function F θ(η
θ) with the reformulation described in

Lemma 3.3.3:

min
η,ζ

∑
θ∈Θ

[
cθη · ηθ +

k−1∑
i=0

pθζ,i · ζ
θ

i

]
(3.35a)

s.t. ηθ−1 ≤ ηθ, ηθLB ≤ ηθ ≤ ηθUB, ηθ ≥ 0, θ ∈ Θ, (3.35b)

ζ
θ

k−1 − ηθ = 0, θ ∈ Θ, (3.35c)

ζ
θ

i − ζ
θ

i−W +

(⌊
W

k

⌋
+ I[i+1,∞)(W%k)

)
ζ
θ

k−1 ≥ d̃θi ,
i ∈ [0 : k − 1],

θ ∈ Θ,
(3.35d)

ζ
θ

0 ≥ 0, θ ∈ Θ, (3.35e)

ζ
θ

i − ζ
θ

i−1 ≥ 0,
i ∈ [1 : k − 1],

θ ∈ Θ,
(3.35f)

ηθ, ζ
θ

i ∈ Z, i ∈ [0 : k − 1],

θ ∈ Θ.
(3.35g)
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Note that the integer program (3.35) has n = (k + 1)|Θ| variables and m = (2k + 5)|Θ|

linear constraints. Denote by ∆ the maximum absolute value of the determinant of a sub-

matrix of the constraint matrix in (3.35). Let c = [cη, pζ ] and b = [ηLB, ηUB, d̃] be the

objective cost and right-hand side vectors, respectively. Then, the size of the integer pro-

gram (3.35) is well-defined by the formula (3.33):

L = log2(∆ + 1) + log2

(
max

{
‖cη‖∞, ‖pζ‖∞

}
+ 1
)

+ log2

(
max

{
‖ηLB‖∞, ‖ηUB‖∞, ‖d̃‖∞

}
+ 1
)

+ log2 (m+ n) .

(3.36)

The feasible region of the linear relaxation of (3.35) is a polytope since all the variables

are bounded. Indeed, it follows from (3.35b), (3.35c), (3.35e), and (3.35f) the following

inequalities

0 ≤ ζ
θ

0 ≤ ζ
θ

1 ≤ · · · ≤ ζ
θ

k−1 = ηθ ≤ ηθUB.

We are now in a position to prove the time complexity of Algorithm 1. First, we must

guarantee that the sizes of all the intermediate linear programs are polynomially bounded by

the size L of the integer program (3.35). Indeed, denote by Lθ,h the size of the operational

problem (3.18), and let nθ,h andmθ,h be the associated number of variables and constraints.

Also, recall that the coefficient matrix of (3.18) is TU. Then,

Lθ,h =1 + log2

(
‖pθζ‖∞ + 1

)
+ log2

(
max

{
‖d̃θ‖∞,

∣∣∣bηθ∗,LRc − |Θ| − 1 + h
∣∣∣}+ 1

)
+ log2 (mθ,h + nθ,h) ,

(3.37)

where the number of variables is nθ,h = k and the number of constraints is mθ,h = 2k + 1.

Similarly, denote by LP the size of the proximity problem (3.6), and let nP and mP be
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the corresponding number of variables and constraints. Recall that the coefficient matrix

of (3.6) is also TU. Then,

LP =1 + log2

(
max

{
‖cη‖∞, ‖qδ‖∞

}
+ 1
)

+ log2

(
max

{
‖ηLB‖∞, ‖ηUB‖∞, ‖bη∗,LRc − (|Θ|+ 1) · e‖∞

}
+ 1
)

+ log2 (mP + nP ) .

(3.38)

where e is a vector of 1’s, the number of variables of (3.6) is nP = 2|Θ|2 + |Θ|, and the

number of constraints is mP = 2|Θ|2 + 4|Θ|+ 1.

Lemma 3.3.5. The linear program sizes Lθ,h and LP are linearly bounded by the size L:

Lθ,h ≤ 2L + 2, LP ≤ 8L + 13, (3.39)

for all θ ∈ Θ and h = 0, 1, . . . , 2|Θ|.

Proof of Lemma 3.3.5. From the definition of L, we obtain the upper bound:

Lθ,h ≤ L + log2

(
max

{
‖d̃θ‖∞,

∣∣∣bηθ∗,LRc − |Θ| − 1 + h
∣∣∣}+ 1

)
. (3.40)

Because (η∗,LR, ζ∗,LR) is an optimal basic feasible solution, we know from Lemma 3.3.4

that 0 ≤ bηθ∗,LRc ≤ ηθ∗,LR ≤ 2L. This implies that

∣∣∣bηθ∗,LRc − |Θ| − 1 + h
∣∣∣ ≤ 2L +

∣∣h− |Θ| − 1
∣∣ ≤ 2L+1 (3.41a)

=⇒ Lθ,h ≤ L + log2(2L+1 + 1) ≤ 2L + 2, (3.41b)

for all θ ∈ Θ and h = 0, 1, . . . , 2|Θ|.

It follows from (3.36) and Lemma 3.3.4 the upper bound |F̃θ(η)| ≤ 22Lθ,h . Then, we use

this inequality and (3.41b) to get |qθδ,h| ≤ 22Lθ,h+1 ≤ 24L+5. Hence, we have the following
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upper bound for LP :

LP ≤ 1 + log2

(
24L+5 + 1

)
+ log2

(
22L+1 + 1

)
+ log2(mP + nP ) (3.42a)

≤ (6L + 9) + log2(mP + nP ) (3.42b)

= (6L + 9) + log2(4|Θ|2 + 5|Θ|+ 1) (3.42c)

≤ (6L + 9) + log2

(
16 · |Θ|2

)
(3.42d)

= (6L + 13) + 2 log2(|Θ|) (3.42e)

≤ 8L + 13. (3.42f)

We use the time-complexityO(((m+n)n2 +(m+n)1.5n)L) of the interior point algorithm

from [12] as the complexity to find an optimal basic feasible solutions for a linear programs

instance, where L is the size of the instance, m is the number of constraints, and n is

the number of variables. Note that if the number of constraints is m = O(n) the time

complexity reduces to O(n3L).

Theorem 3.3.2. The time complexity to obtain an optimal integral solution η∗ to (3.1) using

the Algorithm 1 is O
(
(k3|Θ|3 + |Θ|6)L

)
arithmetic operations at a precision of O(L) bits.

Proof. The number of variables n and constraints m of (3.35) is O(k|Θ|). So, the time

complexity to compute an optimal basic feasible solution (η∗,LR, ζ∗,LR) to the linear relax-

ation of (3.35) is O
(
(k|Θ|)3L

)
.

Since the number of variables nθ,h and constraints mθ,h of each subproblem (3.18) is O(k)

the time complexity to solve each of them is O(k3Lθ,h). By Lemma 3.3.5, we have that

Lθ,h = O(L) and this implies that the time complexity to solve each instance of (3.18)

is indeed O(k3L). Hence, the time complexity to find the coefficient qδ of the proximity

problem (3.6) is O(k3|Θ|2L).

Finally, one needs to solve the proximity problem (3.6) which has O(|Θ|2) variables and
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constraints. This implies a time complexity of O(|Θ|6LP ), and again by Lemma 3.3.5, we

can replace the size Lp by L in the time complexity estimate. Therefore, the total time

complexity of Algorithm 1 is

O(k3|Θ|3L) +O(k3|Θ|2L) +O(|Θ|6L) = O
(
(k3|Θ|3 + |Θ|6)L

)
. (3.43)

3.4 A special class of polynomially solvable Separable Integer Programs

We have described in Section 3.3 the main ingredients for the polynomial solvability of our

Fleet Sizing problem (3.1). Recall that besides the separability structure of the objective

function and the TU property, we also needed the tight convex lower approximation induced

by the linear relaxation of the operational problem (3.2). Those two properties were crucial

for the proof of the polynomial-time complexity of Algorithm 1.

The goal of this section is to describe a more general structure of the constraint matrix of

the second stage problem that guarantees the integrality of the associated linear relaxation

for every argument yi ∈ Z. Here, yi is the argument of the value function fi(yi) that defines

the separable objective function
∑k

i=1 fi(yi) from the first stage. This class of Separable

Integer Program with TU constraints is still be polynomially solvable using Algorithm 1.

3.4.1 Value function induced by a Dyad Contiguous Row (DCR) matrix

We say that a matrix A is Dyad Contiguous Row (DCR) matrix if A is an integral matrix

such that each row contains a block of consecutive θ’s followed by a block of consecu-

tive θ − 1’s or θ + 1‘s, for any θ ∈ Z. The first and last entries of each row are also

considered consecutive. The length of each block may vary across the rows but the total

number of blocks must be less than or equal to 2. This contains the definition of [6] of a

row-circular matrix.
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Below is an example of a DCR matrix:

A =



2 1 1 2 2

1 1 1 2 2

0 0 0 0 0

3 3 2 2 2

4 4 4 4 4


. (3.44)

It is instructive to note that the coefficient matrix of the operational problem formula-

tion (3.7) is a DCR matrix.

Consider the following pure integer program:

f(y) = min c>ζ (3.45a)

s.t. Aζ ≤ b, (3.45b)

ζ1 = y, (3.45c)

ζ ∈ Zk+, (3.45d)

where A is a DCR matrix. Then, we have the following Proposition.

Proposition 3.4.1. The linear relaxation of (3.45) induces a tight convex lower approxi-

mation of f(y).

Proof of Proposition 3.4.1. It is enough to prove that the polyhedron P (y) defined by the

linear constraints of (3.45) is integral for every y ∈ Z. Indeed, consider the symmetry

breaking unimodular transformation (Rζ)i =
∑i

l=1 ζl from (3.16). Its inverse is given by

the formula (R−1ζ)1 = ζ1 and (R−1ζ)i = ζ i − ζ i−1, if 2 ≤ i ≤ k.

By applying the change of variables ζ = Rζ , we obtain the reformulation:

f(y) = min c>ζ (3.46a)

s.t. A[2:k]ζ [2:k] + a1ζ1 ≤ b, (3.46b)
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ζ1 = y, (3.46c)

R−1ζ ≥ 0, (3.46d)

ζ ∈ Zk, (3.46e)

where ζ [2:k] is the subvector of ζ defined by the coordinates from 2 to k, A[2:k] is the matrix

induced by the columns of A from 2 to k, A denotes the matrix AR−1, and ai denotes the

i-th column of A. Note that the first column of A is a1 and the i-th column of A is the

difference ai − ai−1, if i is greater than or equal to 2.

It follows from the DCR property of A that each row of A[2:k] has at most one +1 and −1.

The same property holds for the inverse R−1. If we replace ζ1 by the constant y we ob-

tain an equivalent formulation with totally unimodular constraint. This concludes that the

polyhedron P (y) is integral.
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CHAPTER 4

STATIONARY INFINITE-DIMENSIONAL LINEAR PROGRAMS.

4.1 Introduction

In this chapter, we introduce a notion of primal and dual for infinite-dimensional stationary

linear programs based on a restriction to `∞ and `1 spaces of appropriate dimensions. We

motivate this approach from the fixed-point formulation of discounted stationary programs

and also prove weak duality. Furthermore, we illustrate with a hydro-thermal infinite-

dimensional program and a variation of the [49] example that strong duality may hold for

a large class of infinite-dimensional stationary linear programs. Weak duality even fails

for the later example if we remove the `∞ and `1 constraints. We also show that the value

function of the hydro-thermal infinite-dimensional stationary linear program is piecewise

linear convex with countably many affine functions when the state variable upper bound

is +∞.

4.2 Related work

Duality in infinite-dimensional linear programs has been widely studied in operations re-

search. The work of [49] presents an example of an infinite-dimensional dual program ob-

tained by the finite-dimensional duality rules for which weak duality does not hold. Such a

dual problem is referred to as the natural dual.

[50] provides a review for duality in abstract topological vector spaces and presents the

Slater condition as a sufficient condition for strong duality. This dual notion is called the

algebraic dual. The book [51] contains examples and applications of algebraic duality the-

ory but in general it is not straightforward to compute the algebraic dual of a given infinite-

dimensional linear program. Some recent developments and extensions of the Algebraic
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Duality Theory can be found in [52] and [53]. The work of [54] presents sufficient con-

ditions different than the Slater condition on the algebraic dual of countably infinite linear

programs for both weak and strong duality to hold. [8] consider finite-dimensional dual ap-

proximations as a way to establish properties for the natural dual which avoids the necessity

of the closedness condition for the primal problem and the Slater for the dual. Moreover, in

order to prove strong duality, [8] assume a condition called transversality, which is a con-

vergence to zero condition of a sequence of dual optimal solutions. [55] further specialize

this strong duality result and the transversality condition for the case of finitely many vari-

ables for each constraint. However, the transversality condition is hard to verify in practice.

[56] characterize the value function of an infinite-horizon single-item lot-sizing problem

and show that it has all the properties of a finite-dimensional mixed-integer value func-

tion. That is, they show that the value function is piecewise linear, lower-semicontinuous,

and sub-additive. Finally, [57] model an infinite-horizon stationary stochastic program us-

ing the Bellman equation for the natural dual problem. They develop a cutting plane type

method to solve it.

4.3 Contributions

1. A duality framework: Based on the duality rules for finite dimensional LPs and

restrictions to appropriate `∞ and `1 spaces, we introduce primal and dual infinite

dimensional stationary linear programs and prove weak duality.

2. Evidence of a strong duality result: Strong duality may hold for a large class

of problems in our infinite dimensional setting as illustrated by a stationary hydro-

thermal power generation planning problem. Using a counter-example, we show that

weak duality may fail if one disregards the `∞ and `1 set constraints. However, that

same example satisfies strong duality when the `∞ and `1 constraints are enforced.
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4.4 Weak Duality for infinite-dimensional stationary linear programs

Let A,B ∈ Rm×n be general coefficient matrices, let c ∈ Rn be the unit cost associated

to the decision variable, and let b ∈ Rm be the right-hand side vector of the stationary

constraints. Our decision vector is denoted by x1 ∈ Rn, the initial state is x0 ∈ Rn, and

α ∈ (0, 1) is our discount factor. We present below the fixed-point formulation of our

infinite-horizon discounted stationary program:

VF (x0) := inf c>x1 + α · VF (x1) (4.1a)

s.t. Ax1 ≥ b−Bx0, (4.1b)

x1 ∈ Rn. (4.1c)

A solution to (4.1) is called a fixed-point value function VF .

Note that (4.1) is written with an infimum since we do not know the shape of VF and

there is no guarantee that the optimal value can be attained by a given feasible solution x1.

Observe also that the fixed-point problem (4.1) for extended real-valued functions can have

multiple solutions if no additional regularity condition is imposed for VF since VF ≡ +∞

or VF ≡ −∞ are solutions to (4.1), and other similar solutions can also be constructed.

Another approach for (4.1) is to formulate it as an infinite-dimensional stationary lin-

ear program by recursively expanding the value function VF using the associated lin-

ear program. The problem with this approach is that the resulting objective function∑∞
t=1 α

t−1c>xt may not be a convergent series. [7] modifies the definition of the objective

function by taking the lim inf of such series, that is, lim infT∈Z+

∑T
t=1 α

t−1c>xt. However,

this latter alternative breaks the linear structure of the objective function. Another possibil-

ity is to assume some stationary bound on xt, making the series
∑∞

t=1 α
t−1c>xt absolutely

convergent. However, this approach is problem dependent and it can be challenging to find

uniform bounds in general.

We propose a simple solution for the formulation of an infinite-dimensional stationary
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linear program. We consider the additional constraint that the entire sequence of decisions

x := (x1, x2, x3, . . .) is `∞(Rn)-bounded and denote it as x ∈ `∞(Rn). That is, we assume

that the supremum norm ‖x‖∞ := supt≥1 ‖xt‖ is finite for any feasible sequence x, where

‖ · ‖ is any norm in Rn. Thus, our primal infinite-dimensional stationary linear program is

defined as

V (x0) := inf
∞∑
t=1

αt−1c>xt (4.2a)

s.t. Axt +Bxt−1 ≥ b, t ≥ 1, (4.2b)

xt ∈ Rn, x ∈ `∞(Rn), t ≥ 1. (4.2c)

Note that the set constraint x ∈ `∞(Rn) equivalently means that there exists r ≥ 0 so that

‖xt‖ ≤ r for all t ≥ 1. The stationary bound approach assumes that ‖x‖∞ ≤ r for some

fixed r, which is more restrictive than the `∞(Rn) constraint. In the finite-dimensional

setting, this difference in formulations corresponds to the difference between a program

with a norm ball constraint and an unconstrained program.

By convention, we define the value function V at xo as +∞ if the feasible set for (4.2)

is empty. We will see in section 4.5.2 examples of amplifications effects caused by the

constraints’ relations which result in the problem (4.2) being infeasible or having just one

feasible solution.

Lemma 4.4.1. The value function V : Rn → R ∪ {±∞} defined in (4.2) is a fixed-point

value function for (4.1).

Proof. The goal is to show that the optimal value of

inf c>x1 + α · V (x1) (4.3a)

s.t. Ax1 ≥ b−Bx0, (4.3b)

x1 ∈ Rn. (4.3c)

is V (x0) for every x0 ∈ Rn. Indeed, we can replace the definition of V (x1) from (4.2),
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enumerate the sequence of decisions xt starting from t = 2 onward, and group the infimum

operators to get the following reformulation of (4.3):

inf c>x1 + α ·
∞∑
t=2

αt−2c>xt (4.4a)

s.t. Ax1 ≥ b−Bx0, (4.4b)

Axt +Bxt−1 ≥ b, t ≥ 2, (4.4c)

x1 ∈ Rn, {xt}∞t=2 ∈ `∞(Rn). (4.4d)

The result then follows by noting that (4.4) is just an equivalent representation of (4.2).

The advantage of this approach is that we can define a notion of dual problem using a

similar technique. We define a dual problem based on the same duality rules for finite

dimensional linear programs but include `1(Rn) as an additional set constraint. We say

that the dual sequence µ := {µt}∞t=1 belongs to `1(Rm) if and only if the `1-norm ‖µ‖1 :=∑∞
t=1 ‖µt‖ is finite, where ‖·‖ is any finite dimensional norm in Rm. Below is our definition

of dual problem:

W (x0) := sup −(Bx0)>µ1 +
∞∑
t=1

b>µt (4.5a)

s.t. A>µt +B>µt+1 = αt−1c, t ≥ 1, (4.5b)

µt ≥ 0, µ ∈ `1(Rm), t ≥ 1. (4.5c)

Note that the series
∑∞

t=1 b
>µt is absolutely convergent since µ belongs to `1(Rm). The

following Theorem proves that weak duality holds between (4.2) and (4.5).

Theorem 4.4.1 (Weak Duality). Problems (4.2) and (4.5) satisfy weak duality. That is,

W (x0) ≤ V (x0), (4.6)
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for every x0 ∈ Rn.

Proof. Let x and µ be any primal and dual feasible solution to (4.2) and (4.5), respectively.

Then, using the relations of the primal and dual constraints we get the following identities:

∞∑
t=1

αt−1c>xt =
∞∑
t=1

[
A>µt +B>µt+1

]>
xt =

∞∑
t=1

µ>t Axt + µ>t+1Bxt. (4.7)

Because the primal sequence x belongs to `∞(Rn) and the dual sequence µ belongs to

`1(Rm), both series
∑∞

t=1 µ
>
t Axt and

∑∞
t=1 µ

>
t+1Bxt are both absolutely convergent, and

hence the following identity holds:

∞∑
t=1

µ>t Axt + µ>t+1Bxt =
∞∑
t=1

µ>t Axt +
∞∑
t=1

µ>t+1Bxt. (4.8)

We then replace (4.8) in (4.7) and conclude the duality argument with a standard algebraic

manipulation:

∞∑
t=1

αt−1c>xt =
∞∑
t=1

µ>t Axt +
∞∑
t=2

µ>t Bxt−1

= −(Bx0)>µ1 +
∞∑
t=1

[
Axt +Bxt−1︸ ︷︷ ︸

≥b

]>
µt︸︷︷︸
≥0

≥ −(Bx0)>µ1 +
∞∑
t=1

b>µt.

4.4.1 Rescaled dual problem

Another candidate to dual problem is obtained from (4.5) by rescaling the dual variables

through the bijective linear transformation µt → µt/α
t−1 and imposing that µ is `∞(Rm)-

bounded:

WR(x0) := sup −(Bx0)>µ1 +
∞∑
t=1

αt−1b>µt (4.9a)

s.t. A>µt + αB>µt+1 = c, t ≥ 1, (4.9b)
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µt ≥ 0, µ ∈ `∞(Rm), t ≥ 1. (4.9c)

Note that the rescaled dual problem (4.9) is an infinite-dimensional stationary linear pro-

gram equivalent to (4.2), except for the first objective term −(Bx0)>µ1. Next proposition

proves that (4.9) is a more constrained dual.

Proposition 4.4.1. The feasible region from the rescaled dual problem (4.9) is smaller than

or equal to the feasible region of the original dual problem (4.5). Moreover, the inequality

WR(x0) ≤ W (x0) holds for all x0 ∈ Rn.

Proof. Indeed, given a feasible solution µ to (4.9), the solution µ̃ defined as µ̃t = αt−1µt

is feasible to (4.5) with the same objective value. It follows then that µ̃ is `1(Rm)-bounded

since

∞∑
t=1

‖µ̃t‖ =
∞∑
t=1

αt−1‖µt‖ ≤ ‖µ‖∞ ·
∞∑
t=1

αt−1 =
‖µ‖∞
1− α

< +∞.

On the other hand, the converse is not necessarily true. See the example below.

For instance, consider the dual and the rescaled dual problems

sup
∞∑
t=1

−µ̃t sup
∞∑
t=1

−αt−1µt (4.10a)

s.t. µ̃t ≥ αt−1, t ≥ 1, and s.t. µt ≥ 1, t ≥ 1, (4.10b)

µ̃ ∈ `1(R), µ ∈ `∞(R). (4.10c)

Given β ∈ (0, 1) greater than α, the dual sequence µ̃ defined as µ̃t = βt−1 for all t ≥ 1

is dual feasible. However, the image µ defined by the rescaling map is not feasible for the

rescaled dual problem since µ is not `∞(R)-bounded:

sup
t≥1
|µt| = sup

t≥1

(
β

α

)t−1

= +∞.
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Hence, the rescaled dual problem may have a strictly smaller feasible set.

4.5 Examples

4.5.1 An infinite-horizon Hydro-Thermal Power Planning problem

The focus of this section is to characterize the value function of an infinite-horizon sta-

tionary discounted hydro-thermal power planning problem as well as to present an optimal

solution for such a program. For this problem, we only assume that there is only one hydro

plant and one thermal plant.

The hydro plant has an energy reservoir with maximum storage capacity v and a constant

energy inflow a from one stage to another. The hydro plant can output energy at most equal

to its stored energy v0 plus the energy inflow a. The thermal plant instead has an arbitrary

generation capacity. Both the thermal and the hydro generation must add up to the energy

demand d. The thermal generation unit cost for our problem is c while the associated cost

for hydro generation is 0. We denote the discount factor of this problem by α, which is a

positive number less than 1.

The decision variables of the infinite-horizon stationary discounted hydro-thermal problem

are the final stored energy v1, the hydro generation q1, and the thermal generation g1. Our

fixed-point formulation is written below:

VF (v0) = inf cg1 + α · VF (v1) (4.11a)

s.t. v1 + q1 = a+ v0, (4.11b)

g1 + q1 = d, (4.11c)

v1 ≤ v, (4.11d)

v1, g1, q1 ≥ 0. (4.11e)

We assume that all parameters c, a, d, and v are non-negative scalars and that the energy

demand d is greater than the energy inflow a, i.e., d > a.
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We thus find a fixed-point value function VF and the corresponding optimal solutions

of (4.11) by defining the infinite-dimensional stationary linear program as in (4.2) and the

corresponding dual problem as in (4.5). Indeed, the infinite-dimensional stationary linear

program counterpart of (4.11) is given by

V (v0) := inf
∞∑
t=1

αt−1 · cgt (4.12a)

s.t. vt − vt−1 + qt = a, t ≥ 1, (4.12b)

gt + qt = d, t ≥ 1, (4.12c)

vt ≤ v, t ≥ 1, (4.12d)

vt, gt, qt ≥ 0, t ≥ 1, (4.12e)

v, g, q ∈ `∞(R). (4.12f)

We note that all the variables have explicit or implicit uniform bounds. For instance, all

the variables are non-negative, both the thermal gt and the hydro generation qt are upper

bounded by the energy demand d, and the stored energy vt is uniformly bounded by v0 + a

for every t ≥ 1. Thus, the `∞(R) set constraint in (4.12) is redundant for v, g, and q.

Following the same idea from the general dual case (4.5), we define the dual problem

of (4.12):

W (v0) := sup v0µ1 + a ·
∞∑
t=1

µt + d ·
∞∑
t=1

γt + v ·
∞∑
t=1

ut (4.13a)

s.t. µt − µt+1 + ut ≤ 0, t ≥ 1, (4.13b)

µt + γt ≤ 0, t ≥ 1, (4.13c)

γt ≤ αt−1c, t ≥ 1, (4.13d)

µt, γt ∈ R, ut ≤ 0, t ≥ 1, (4.13e)

µ,γ,u ∈ `1(R). (4.13f)

Note that weak duality follows from Lemma 4.4.1.
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Proposition 4.5.1 (Strong Duality for the hydro-thermal problem). If v0 > d + v − a,

then the primal problem (4.12) is infeasible and the dual (4.13) problem is unbounded. If

v0 ≤ d+ v− a, then the primal and dual problems satisfy strong duality. In particular, the

primal and dual optimal values are equal to

V (v0) = W (v0) =


αi−1c ·

[
d−a

(1−α)
− (v0 − θi−1)

]
, if v0 ∈ [θi−1, θi] ∩ [0, d+ v − a],

+∞, otherwise,
(4.14)

where θi denotes i(d − a) for all i ≥ 1. The primal and dual optimal solutions to (4.12)

and (4.13) are given by the following tables:

Table 4.1: Primal and dual optimal sequences for (4.12) and (4.13), respectively.

Stage v∗t q∗t g∗t
1 ≤ t ≤ i− 1 v0 − θt d 0

t = i 0 v0 + a− θi−1 θi − v0

t ≥ i+ 1 0 a d− a

Stage µ∗t γ∗t u∗t
1 ≤ t ≤ i −αi−1c αi−1c 0
t ≥ i+ 1 −αt−1c αt−1c 0

Proof. Suppose that v0 > d+v−a. From the state transition equation vt−vt−1+qt = a, we

have that v0 = v1 + q−a ≤ v+d−a, which is a contradiction. Hence, the primal problem

is infeasible for any initial state v0 greater than d + v − a. For the dual problem (4.13),

consider the following dual feasible sequence:

Stage µkt γkt ukt

t = 1 k −k −k

t > 1 0 0 0

.

Therefore, the dual objective value is k(v0 + a− d− v), which diverges to +∞ as k tends

to +∞. Thus, the dual problem (4.13) is unbounded.

Suppose that v0 ≤ d+ v − a. It is straightforward to check that that the sequences defined

by table 4.1 are primal and dual feasible, respectively. We just need to show that the

corresponding objective values are equal since weak duality holds by Lemma 4.4.1. Indeed,
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we have the following expression for the primal objective value:

∞∑
t=1

αt−1c · gt = αi−1c · (θi − v0) +
∞∑

t=i+1

αt−1c · (d− a)

= αi−1c · (θi − v0) +
αic

(1− α)
(d− a)

= αi−1c ·
[
(i− 1)(d− a)− v0 +

d− a
(1− α)

]
= αi−1c ·

[
d− a

(1− α)
− (v0 − θi−1)

]
. (4.15)

Similarly, we obtain the same expression for the dual objective value:

v0µ1 +
∞∑
t=1

[
dγt + aµt + vut

]
= −v0α

i−1c+
i∑
t=1

αi−1c[d− a] +
∞∑

t=i+1

αt−1c[d− a]

= αi−1c[−v0 + i(d− a)] +
αic

1− α
[d− a]

= αi−1c ·
[
−v0 + i(d− a) +

α

(1− α)
(d− a)

]
= αi−1c ·

[
d− a

(1− α)
− (v0 − θi−1)

]
.

Corollary 4.5.1. The value function V from (4.12) is an extended real-valued piecewise

linear convex function that can be represented in the following form:

V (v0) = max
i≥1

{
αi−1c ·

[
d− a

(1− α)
− (v0 − θi−1)

]}
+ I[0,d+v−a](v0), (4.16)

where θi = i(d − a). In particular, if v is +∞, then the value function V has an infinite

number of linear pieces.

Proof. The value function V is an extended real-valued convex function since the dual

problem (4.13) is the maximum of affine functions over v0. Consequently, it follows

from (4.15) the form for each linear piece for (4.16).
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4.5.2 Weak duality is not guaranteed for problems without `∞(Rn) and `1(Rm) constraints

Consider a primal infinite-dimensional stationary linear program with non-negative deci-

sions xt and zt at each stage t ≥ 1, a state transition equation xt + zt − 2xt−1 = 0, an unit

cost of 0 for xt and 1 for zt with discount factor α equal to 1/2:

VC(x0) := inf
∞∑
t=1

(1/2)t−1zt (4.17a)

s.t. xt + zt − 2xt−1 = 0, t ≥ 1, (4.17b)

xt, zt ≥ 0, t ≥ 1. (4.17c)

Note, we do not include, in (4.17), the `∞(R) constraint for the sequence of decision

variables x and z. If we take the dual of (4.17) using the same duality rules for finite-

dimensional linear programs we get the following problem:

WC(x0) := sup 2x0µ1 (4.18a)

s.t. µt − 2µt+1 ≤ 0, t ≥ 1, (4.18b)

µt ≤ (1/2)t−1, t ≥ 1, (4.18c)

µt ∈ R, t ≥ 1. (4.18d)

Again, we do not have in (4.18) the `1(R) constraint for the sequence of dual variables µ.

The proposition below presents the explicit form of the value functions VC and WC .

Proposition 4.5.2. The value functions VC and WC have the following expressions:

VC(x0) =


0, if x0 ≥ 0,

+∞, otherwise,
WC(x0) =


2x0, if x0 ≥ 0,

+∞, otherwise.
(4.19)

Therefore, problems (4.17) and (4.18) do not satisfy weak duality.

Proof. We first compute the value function VC of (4.17). If x0 is non-negative, the primal
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sequence defined as (xt, zt) = 2t(x0, 0) for all t ≥ 1 is feasible to (4.17) and attains the

objective lower bound 0. Hence, (x, z) is an optimal primal sequence to (4.17) and VC(x0)

equals 0. If x0 is negative, the feasible set of (4.17) is empty and thus VC(x0) is equal

to +∞.

We now compute the value function WC of (4.18). If x0 is non-negative, the dual sequence

defined as µt = (1/2)t−1 for all t ≥ 1 is a feasible to (4.18) and µ1 achieves its upper

bound of 1. Hence, µ is a dual optimal sequence and WC(x0) equals 2x0. If x0 is negative,

then for each k ≥ 1 and t ≥ 1, the dual sequence defined as µkt = −k(1/2)t−1 is feasible

to (4.18) and it has dual objective value of −2kx0. Thus, problem (4.18) is unbounded

and WC(x0) is equal to +∞.

Surprisingly, if we consider the `∞(R) constraint to the primal problem (4.17) and the `1(R)

to the dual problem (4.18) we recover strong duality as illustrated in the next Proposition.

Proposition 4.5.3. Let V be the value function defined by (4.17) with the `∞(R) constraint

on the primal sequences x and z and let W be the value function defined by (4.18) with

the `1(R) constraint on the dual sequence µ. Then, the value functions V and W have the

following form:

V (x0) = W (x0) =


2x0, if x0 ≥ 0,

+∞, otherwise.
(4.20)

In particular, the primal and dual problems (4.17) and (4.18) with the `∞(R) and `1(R)

constraints, respectively, satisfy strong duality.

Proof. The argument to prove the expression forW (x0) is analogous to the argument in the

proof of Proposition 4.5.2 for WC(x0) since all the dual sequences µ used in the previous

proof are `1(R) bounded.

From Lemma 4.4.1, we know that weak duality holds for V (x0) and W (x0). Thus, the

inequality W (x0) ≤ V (x0) holds for all x0 ∈ Rn. If x0 is non-negative, then the sequence
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defined as

(xt, zt) :=


(0, 2x0), if t = 1,

(0, 0), if t ≥ 2,

for all t ≥ 1 is feasible to (4.17), (x, z) belongs to `∞(R) × `∞(R), and the associated

objective value is 2x0. Since W (x0) equals 2x0, we conclude that the primal sequence

(x, z) is optimal and V (x0) = 2x0. If x0 is negative, then the feasible set of (4.17) is

empty and thus V (x0) is equal to +∞.

4.5.3 Lot-Sizing as a generalization of the Hydro-Thermal planning problem

In this section, we comment about the similarity between the Stationary Hydro-Thermal

Power Planning problem from the previous section and the Stationary Single-Item Lot-

Sizing problem described in [56]. In fact, the Hydro-Thermal problem (4.12) can be framed

as a Single-Item Lot-Sizing. A major difference is that the latter problem has a nonlinear

objective function, so our duality framework does not hold for it.

Let zt and st be the production and stock at time t, respectively. The objective function is

composed by the unit cost c ≥ 0 to produce an item, the setup cost f ≥ 0 for production,

and the holding cost h ≥ 0 for the stock. The constraint parameters are the single-item de-

mand d ≥ 0 in each time period, the maximum production capacity z, the maximum stock

capacity s, and the initial stock s ≥ 0. The Stationary Single-Item Lot-Sizing problem is

defined as the following nonlinear problem:

C(s0) = inf
z,s

∞∑
t=1

αt−1
(
fH(zt) + czt + hst

)
(4.21a)

s.t. zt + st−1 − st = d, ∀t ≥ 1, (4.21b)

zt ≤ z, st ≤ s, ∀t ≥ 1, (4.21c)

zt, st ≥ 0, ∀t ≥ 1, (4.21d)

(4.21e)
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where α ∈ (0, 1) is the discount factor, and H(z) is the Heaviside function, that is,

H(z) :=


1, if z > 0,

0, if z ≤ 0.
(4.22)

If we replace the hydro generation variable qt by the right-hand side of the identity qt =

d − gt then we frame the Stationary Hydro-Thermal Power Planning Problem (4.12) as a

single-item lot-sizing problem (4.21):

V (v0) = inf
∞∑
t=1

αt−1 · cgt (4.23a)

s.t. gt + vt−1 − vt = d− a, t ≥ 1, (4.23b)

gt ≤ d, vt ≤ v, t ≥ 1, (4.23c)

gt, vt ≥ 0, t ≥ 1, (4.23d)

Note that the setup cost f is 0 for (4.23).

Single-Item Uncapacitated Lot-Sizing problem

[56] analyzes the Single-Item Uncapacitated, i.e., the Lot-Sizing (4.21) with production z

the stock s maximum capacities equal to +∞. They approach this problem using only

primal techniques as described by the following theorem:

Theorem 4.5.1. Suppose d > 0, and let t∗ = b s
d
c+ 1. Any optimal solution to (4.21) with

z = s = +∞ satisfies the following statements:

1. zt = 0, for all t < t∗.

2. zt∗ > 0, and st∗−1 + zt∗ = kt∗d, for some kt∗ ∈ N.

3. st−1zt = 0, for all t > t∗, and if zt > 0, then zt = ktd, for some kt ∈ N.

Proof. See [56].
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Theorem 4.5.1 states that any optimal solution to the Single-Item Uncapacitated Lot-Sizing

problem must use as possible the inventory st to meet the demand dwithout any production,

and then produce enough items so that the next inventory st∗ is an integer multiple of the

demand.

One issue with the proof of Theorem 4.5.1 is whether or not there exists any optimal so-

lution. The second issue is how Theorem 4.5.1 is used to establish the expression for the

value function C(s0) using dynamic programming. Again, the existence of an optimal

solution is necessary to establish a dynamic programming expression.

For simplicity, let us focus on the case when the initial inventory s0 is 0. If the optimal

solution exists then it should be of the form

znt =


nd, if (t− 1)%n = 0,

0, if (t− 1)%n > 0,
and snt = (n− t)d, (4.24)

for some n ∈ N. We call n the replenishment interval. This implies that we can restrict

the Single-Item Uncapacitated Lot-Sizing (4.21) to feasible solutions (4.24) parameterized

by n: C(0) = infn∈N
∑∞

t=1 α
t−1
(
fδ(znt ) + cznt + hsnt

)
. By expanding this expression, we

obtain the following formula:

C(0) = inf
n∈N

{
1

1− αn

(
f + ncd+ hd

n−1∑
l=1

αl−1(n− l)

)}

= inf
n∈N

n
(
cd+ hd

(1−h)

)
+ f

1− αn
− hd

(1− α)2
,

 , (4.25)

where the second equality comes from the identity
∑k

l=1 α
l−1(k − l) = k(1−α)−(1−αk)

(1−α)2
.

Note that the infimum of (4.25) is not attainable if c = h = 0. Indeed,

C(0) = inf
n∈N

f

1− αn
= lim

n→∞

f

1− αn
= f.
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A more intuitive way to understand this fact is to analyze the feasible solutions. For every

feasible solution the production z1 at the first time period must be positive since the initial

inventory is 0, and there is another positive production zt at some future time period t > 1.

Thus, the objective cost of any feasible solution must be greater than f . Finally, each

feasible solution (zn, sn) defined in (4.24) has objective cost f
1−αn , which converges to f

as n tends to∞. Hence, if c = h = 0 then the infimum of (4.25) is not attainable.

[56] also observes that the right-hand side expression (4.25) as a continuous function of n

is Strongly Convex if the production cost c or the holding cost h is positive. Then, one

can find the optimal replenishment interval n by finding the optimal continuous solution n∗

to (4.25) and by taking the value among the round-up dn∗e and round-down bn∗c solutions

that has the minimum objective cost.

A conjecture for the Periodic Uncapacitated Single-Item Lot-Sizing problem

Inspired by dynamic programming idea of [56], it might be possible to extend their solution

method to a larger class of infinite-horizon programs such as the Hydro-Thermal Power

Planning problem or Single-Item Lot-Sizing problem with periodic coefficients modulo T ,

where T ∈ N is a fixed number. However, the generalization of Theorem 4.5.1 may not be

straightforward for the periodic case since its proof directly uses the stationarity property

of the coefficients.

Consider the following Single-Item Lot-Sizing problem with periodic coefficients mod-

ulo T :

CP (s0) = inf
z,s

∞∑
t=1

αt−1
(
ftH(zt) + ctzt + htst

)
(4.26a)

s.t. zt + st−1 − st = dt, ∀t ≥ 1, (4.26b)

zt ≤ zt, st ≤ st, ∀t ≥ 1, (4.26c)

zt, st ≥ 0, ∀t ≥ 1, (4.26d)

(4.26e)
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where all the coefficients are periodic modulo T , that is,

ft = ft+T , ct = ct+T , ht = ht+T , dt = dt+T , zt = zt+T , and st = st+T , (4.27)

for all t ≥ 1. For simplicity, we only analyze for the case where the initial state s0 is

equal to 0. Below we introduce an auxiliary problem whose optimal solutions generalize

the replenishment interval solutions (4.24):

CP
n (0) := min

z,s

nT∑
t=1

αt−1
(
ftH(zt) + ctzt + htst

)
(4.28a)

s.t. zt + st−1 − st = dt, ∀1 ≤ t ≤ n, (4.28b)

s0 = 0, sn = 0, (4.28c)

zt ≤ zt, st ≤ st, ∀1 ≤ t ≤ n, (4.28d)

zt, st ≥ 0, ∀1 ≤ t ≤ n, (4.28e)

where n here is the “replenishment period”. We claim that when the infimum of (4.26) is

attainable, there exists n ∈ N such that

CP (0) =
CP
n (0)

1− αnT
. (4.29)

We show some numerical examples that illustrates our ideas for the stationary case, that

is, when T = 1. Let α = 0.95, d = 40, c = 3, h = 0.05. We perform a sensitivity

analysis for the setup cost f . The higher the setup cost the larger tends to be the production,

and the longer tends to be the replenishment interval n. To evaluate our ideas, we solve

the finite-horizon version (4.26) and call its optimal value longHorizon. The longHorizon

problem is the same as (4.28), where n equals 300. We also find the optimal replenishment

interval n as described before with the round-up and round-down solutions of the optimal

continuous solution n∗ of (4.25). This leads to a feasible solution whose objective cost

we call lotPolicy. Using the same replenishment interval n, we solve our heuristic (4.28)
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and compute the right-hand side of (4.29). We call such value periodicPolicy. We have a

variable withinError that represents with True if all the costs of that particular instance are

within a relative error of 10−4 of the lotPolicy cost, or False otherwise. Below, we present

Table 4.2 with our sensitivity analysis. We performed a similar numerical experiment for

Table 4.2: Costs of each approach to solve the Uncapacitated Single-Item Lot-Sizing prob-
lem.

setupCost longHorizon lotPolicy periodicPolicy withinError replenishment (n)
10 2584.62 2584.62 2584.62 True 2
50 2916.08 2916.04 2916.04 True 3

100 3178.46 3178.45 3178.45 True 5
200 3575.86 3575.75 3575.75 True 7
400 4176.52 4176.33 4176.33 True 9
500 4433.48 4433.48 4433.48 True 10

1000 5524.13 5524.11 5524.11 True 14
5000 11632.38 11632.37 11632.37 True 27

the periodic case, that is, when T > 1, and we observe the same agreement between the

longHorizon optimal values and the periodicPolicy rescaled costs. This supports our claim

that the approach (4.28) generalizes the explicit policy (4.24) for the periodic case.
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CHAPTER 5

BASIC FEASIBLE SOLUTION FOR ROW-FINITE LINEAR SYSTEMS

This chapter investigates an algebraic method to characterize extreme points for convex

sets defined by row-finite linear systems. Our initial motivation is whether or not the primal

and dual optimal solutions of the stationary hydro-thermal planning problem are extreme

points.

5.1 Related work

Extreme points have been studied in the literature of infinite dimensional linear programs

for a long time but with most applications limited to network flow and non-stationary

Markov decision process. In this section, we describe some papers that are directly re-

lated to extreme points for infinite dimensional linear programs.

Sufficient conditions for the existence of extreme optimal solutions for infinite horizon

problems with Leontief constraints were studied in [58]. [59] develops the concept of

right analytic extreme points for continuous-time linear programming, which is a type of

full-rank sufficient condition. The work of [60] investigates the convergence in product

topology sense of finite-dimensional projections of extreme points. They also extend the

notion of total unimodularity to infinite systems of linear equalities and nonnegative vari-

ables. [11] establishes necessary and sufficient conditions for a network flow to be extreme

on a graph with countably infinity nodes and finite degrees on each node. Inspired by the

notion of basic feasible solutions, [10] establishes sufficient conditions for a solution to

be an extreme point. They apply their concept to infinite network flow problems and non-

stationary Markov decision processes. [61] provides a characterization of extreme point

solution of non-stationary Markov decision processes with discounted cost criterion and

finite state space.
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Along with the investigations of properties of extreme points, there were several devel-

opments of simplex-type algorithms for infinite dimensional linear programs. A simplex

method extension for semi-infinite linear programs was developed by [62], but such a

method has some unresolved numerical issues. An infinite network simplex method was

developed by [63] based on a notion of duality for network flow problems. Their algorithm

takes a finite amount of time for each pivot step. The work of [64] proposes a simplex-

type algorithm for a Countably Infinite Linear Programs class. It guarantees convergence

for the class of Nonstationary Infinite-Horizon Markov Decision problems. [65] provide a

different simplex method for a structured class of uncapacitated countably infinite network

flow problems. It uses a primal approach based on the nonnegativity of reduced costs and

convergence of spanning trees.

5.2 Contributions

1. Asymptotically Compatible vectors and basic feasible solutions: The geometric

definition of an extreme point may not be a convenient method to certify whether or

not a given point of a convex set is extreme. Given arbitrary linear constraints, we

extend the definition of a basic feasible solution using Asymptotically Compatible

(AC) vectors. We show that a point is extreme if and only if the AC solution to the

linear equality system induced by the set of active constraints is the only the trivial

solution. This method directly proves that the primal and dual optimal solutions of

the stationary hydro-thermal power generation planning problem are extreme.

2. Row-finite linear systems: A row-finite linear system over the sequence space of

real numbers is a countable set of linear constraints induced by coefficients with a

finite number of non-zero elements. The Gauss-Jordan elimination method of [13]

can parameterize all the solutions of a row-finite equality system. Such a method

may certify the existence of a unique (or multiple) AC solution for the set of active

constraints, which implies that the corresponding feasible solution is (not) extreme.
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This idea is a direct parallel with the Gaussian elimination method for equality lin-

ear systems of finite dimension, but it has the rightmost pivoting as an important

distinction.

3. Application to extreme flows over countably infinite graphs: We illustrate the

use of our extreme point result for an alternative proof of the extreme flow char-

acterization in countably infinite graphs of finite node degrees. The original result

is from [11]. It provides another condition on the residual graph together with not

having a cycle form the necessary and sufficient conditions for a network flow to be

extreme.

5.3 An extension of basic feasible solution for arbitrary linear systems.

In this section, we introduce the notion of an asymptotically compatible (AC) solution

and extend the definition of a basic solution for arbitrary systems of linear constraints.

Finally, we conclude this section with the proof that an extreme point is equivalent to a

basic feasible solution.

Let X be a vector space over R and consider a convex set P ⊆ X represented by a family

of linear constraints:

P =

x ∈ X
∣∣∣∣∣∣∣
Fi(x) = bi, ∀i ∈ I,

Gj(x) ≤ hj, ∀j ∈ J.

 , (5.1)

where Fi and Gj are linear real-valued functions on X , I and J are arbitrary index sets,

and bi and hj are real numbers. We say that x ∈ P is an extreme point if there is no line

segment in P that contains x as mid-point, or, in other words, for every w, y ∈ P such that

1
2
(w + y) = x it implies that y = w = x.

For each inequality constraint j ∈ J , denote by rj(x) the slack function defined by the

difference hj − Gj(x). Let N+
x and N0

x be the index sets of non-binding and binding
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inequality constraints at x ∈ P , respectively, that is, N+
x := {j ∈ J | rj(x) > 0} and

N0
x := {j ∈ J | rj(x) = 0}. We say that a vector d ∈ X is asymptotically compatible

with x ∈ X (AC-x) if

sup
j∈N+

x

|Gj(d)|
rj(x)

< +∞. (5.2)

In particular, 0 and x are AC-x vectors. Note that the set of AC-x vectors forms a linear

subspace of X . Recall that a vector d ∈ X is a feasible direction at x ∈ P if there exists a

positive scalar α > 0 such that x+ αd belongs to P .

Lemma 5.3.1 (Characterization of feasible directions). Consider the following system on

(x, d) ∈ P ×X:

Fi(d) = 0, ∀i ∈ I, (5.3a)

Gj(d) ≤ 0, ∀j ∈ N0
x , (5.3b)

The direction d ∈ X is feasible at x ∈ P if, and only if, the tuple (x, d) satisfies the

system (5.3) and the supremum c := sup
j∈N+

x

Gj(d)

rj(x)
is not +∞. In particular, the set I of

feasible steps along d is

I =


[0, 1/c], if c > 0,

[0,∞), if c ≤ 0.

Proof. Suppose that d ∈ X is a feasible direction at x ∈ P , i.e., there exists α > 0 such

that x + αu ∈ P . Then, the pair (x, d) satisfies (5.3). We now check that c is not +∞.

Indeed, Gj(x+ αd) ≤ hj for all j ∈ J , which implies that

Gj(d)

rj(x)
≤ 1

α
, ∀j ∈ N+

x .

If N+
x is empty then c is −∞, by convention. Hence, c is not +∞.

Conversely, suppose that (x, d) satisfies (5.3) and c < +∞. If c is−∞, which is equivalent

to say that N+
x is empty, then Gj(d) is non-positive for all j ∈ J because N0

x equals the
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whole index set J . If c is a non-positive real number then Gj(d) is also non-positive for

all j ∈ J because c is the supremum of the ratio Gj(d)/rj(x) over j ∈ N+
x and rj is non-

negative at x. In both cases, d is a feasible direction at x and the set of feasible steps I

along d is [0,∞).

If c is a positive real number then there exists a function Gj(d) which is positive, so we can

represent c as the supremum c = supj∈J : Gj(d)>0
Gj(d)

rj(x)
.

Let α be the constant 1/c and note that:

α =
1

sup
j∈J :Gj(d)>0

Gj(d)

rj(x)

= inf
j∈J :Gj(d)>0

rj(x)

Gj(d)
. (5.4)

We prove that Gj(x + αd) is non-positive for all j ∈ J and conclude that d is a feasible

direction. Indeed, if Gj(d) is non-positive then Gj(x + αd) ≤ Gj(x) ≤ hj . If Gj(d) is

positive then we have that

Gj(x+ αd) = Gj(x) +

(
inf

k∈J :Gk(d)>0

rk(x)

Gk(d)

)
·Gj(d)

≤ Gj(x) +
rj(x)

Gj(d)
Gj(d) = hj.

Hence, d is a feasible direction.

We now prove that for any α greater than α the point x+αd does not belong to P . Indeed,

from the infinmum property, there exists j ∈ J such that Gj(d) is positive and α ≤ rj(x)

Gj(d)
<

α. This implies that x+ αd violates the j-th inequality constraint:

hj = Gj(x) +
rj(x)

Gj(d)
Gj(d) < Gj(x) + αGj(d) = Gj(x+ αd).

Hence, x+ αd /∈ P and I = [0, 1/c].

Using Lemma 5.3.1, we can extend the following characterization of extreme points.
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Theorem 5.3.1 (Extreme Point Characterization Theorem). Let P ⊆ X be a convex set as

in (5.1) and let x ∈ P . Then, the following are equivalent:

1. x is an extreme point.

2. The unique AC-x solution to the homogeneous equality linear system

Fi(d) = 0, ∀i ∈ I, (5.5a)

Gj(d) = 0, ∀j ∈ N0
x , (5.5b)

is the zero vector.

3. The unique AC-x solution to the linear equality system

Fi(x
′) = bi, ∀i ∈ I, (5.6a)

Gj(x
′) = hj, ∀j ∈ N0

x , (5.6b)

is the solution x.

Proof. (1) =⇒ (2): Suppose that x is an extreme point of P and let d ∈ X be an AC-x

solution to the homogeneous system (5.5). From Lemma 5.3.1, we have that d and −d are

both feasible directions. In particular, there exists a positive scalar α such that the vectors

x+ αd and x− αd belong to P , which implies that

x =
1

2
(x+ αd) +

1

2
(x− αd).

Since x is an extreme point, we have that x+ αd = x− αd. Thus, d is the 0 vector.

(2) =⇒ (3): Suppose the only AC-x solution to the homogeneous linear system (5.5) is

the zero vector. Let y and w be two AC-x solutions to the inhomogeneous system (5.6).

This implies that the difference of vectors y − w is an AC-x solution to the homogeneous

linear system (5.5), so y equals w.
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(3) =⇒ (1): Suppose the only AC-x solution to the inhomogeneous linear system (5.6)

is x. Let y, w ∈ P be such that x is the midpoint vector in the line segment between y and

w, that is, y+w
2

= x. Let d be the direction from w to y, i.e., d = (y − w)/2 and note that

d and −d are both feasible directions at x. From Lemma 5.3.1, the direction d is an AC-x

solution to the homogeneous linear system (5.5) and because y equals x + d and w equals

x − d we have that the vectors y and w are AC-x solutions to the inhomogeneous linear

system (5.6). Hence, the vectors y and w are equal to x.

After Theorem 5.3.1, it makes sense to extend the notion of a basic solution to arbitrary

linear systems. We say that a vector x ∈ X is a basic solution to P if x is the unique AC-x

solution to the inhomogeneous system (5.6) induced by the binding constraints at x. Note

that x may not be a point in P . We say that x is a basic feasible solution to P if x is a basic

solution and x belongs to P .

5.3.1 Example: the primal and dual optimal solutions of the stationary hydro-thermal

power planning problem

The extreme point characterization from Theorem 5.3.1 can be used to prove that the primal

and dual optimal solutions from Table 4.1 are extreme points.

Corollary 5.3.1 (Hydro-Thermal optimal solutions). The primal and dual optimal solu-

tions from Table 4.1 are extreme points.

Proof. The primal and dual equality linear systems induced by the binding constraints at

the solutions of Table 4.1 are the following:



vt − vt−1 + qt = a, t ≥ 1,

gt + qt = d, t ≥ 1,

gt = 0, 1 ≤ t ≤ i− 1,

vt = 0, t ≥ i,

and



µt − µt+1 + ut = 0, 1 ≤ t ≤ i− 1,

µt + γt = 0, t ≥ 1,

γt = αt−1c, t ≥ i,

ut = 0, t ≥ 1,

(5.7)
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where i is the smallest index k ≥ 0 such that v0 ≤ k(d − a). It is straightforward to see

that both linear systems in (5.7) have exactly one solution which corresponds to the primal

and dual optimal solutions from Table 4.1, respectively. It follows from Theorem 5.3.1 that

those primal and dual optimal solutions are extreme points.

For more general problems, it may not straightforward to identify the AC solutions of an

equality linear system. In the next section, we provide a general technique to parameterize

all the solutions of a particular equality linear system called

5.4 Row-finite linear systems

This section investigates a more systematic approach to determine if a vector is a basic fea-

sible solution based on the constraint coefficients and right-hand side vector. In particular,

we restrict our scope to systems of linear constraints defined by row-finite matrices fol-

lowing [13]; each constraint has only a finite number of non-zero coefficients. By finding

all the solutions to a row-finite linear system, we may be able to check whether there is a

non-trivial AC-x solution to it or not.

Let c00(R) be the set of vectors over Rω that have a finite number of non-zero entries.

Let RFM(R) be the space of infinite matrices where each matrix A ∈ RFM(R) has a

countable number of rows and columns, and each row of A is a vector in c00(R). Consider

the algebra over RFM(R) formed by the usual addition, scalar, and matrix multiplication.

We define the length function l : c00(R)→ Z+ as the position of the last nonzero coordinate

of a given vector u ∈ c00(R). If u is the zero vector we define l(u) as 0.

We denote by calligraphic letters such as A, B, and C the row-finite matrices in RFM(R),

while the regular capital letters such as A, B, and C are reserved for finite dimensional

matrices in Rm×n. Let ai denote the i-th row of A, and let aij denote the ij-entry of A.
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5.4.1 Solution parametrization and the Hermitian Normal Form

In this section, we introduce an important class of row-finite matrix to parameterize the

solutions of equality linear systems called Hermitian Normal Form.

We say that a row-finite matrix H ∈ RFM(R) is in the Hermitian Normal Form (HNF) if

the following conditions hold:

1. The length of the nonzero rows of H is in increasing order, that is, l(hi) < l(hj), if

i < j and hi, hj are both non-zero rows.

2. The rightmost coefficient of any nonzero row hi ofH is 1, that is, hi,l(hi) = 1.

3. The coefficients above and below the rightmost coefficient of a nonzero row hi are 0,

that is, hk,l(hi) = 0, for every k 6= i.

It is simple to obtain all the solutions of a linear systemHx = b ifH is in HNF. Indeed, we

can partition the set of natural numbers into those such that the length of the i-th is different

than zero and those that are zero, respectively. Then, we describe the linear systemHx = b

equivalently as

xl(hi) = bi −
l(hi)−1∑
j=1

hijxj, ∀i ∈ N; l(hi) 6= 0,

0 = bi, ∀i ∈ N; l(hi) = 0,

where hij is the ij-th entry of H. So, the linear system Hx = b has a solution if and only

if bi is 0 for every row hi of zero length. The solutions toHx = b can be parameterized by

the coordinates xj ∈ R such that j 6= l(hi), for all i ∈ N.
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An example of extreme point over Rω.

The following example was inspired by [66]. Consider the convex set P ⊆ Rω defined by

the following system of row-finite linear constraints:

x1 + x2 = 2,

x1 − x3 = 1/4,

x2 − x4 = 1/4,

x3 − x5 = 1/8,

x4 − x6 = 1/8,

. . . . . . ...

xj ≥ 0, ∀j ∈ ω.

(5.8)

Let A be the row-finite constraint matrix and let b be the right-hand side vector defined by

the equality system (5.8). Let x∗ ∈ Rω be a vector defined as

x∗j =


(2k + 1)/2k, if j = 2k − 1 for some k ≥ 1,

1/2k, if j = 2k for some k ≥ 1.

It is straightforward to check that x∗ is a solution to (5.8), so it belongs to the convex

set P . However, checking whether x∗ is an extreme point might be challenging. A more

convenient approach is to perform elementary row operations to transform the row-finite

matrix A into its HNF, parameterize all the solutions to the linear system (5.8), and apply

the Basic Feasible Solution characterization of Theorem 5.3.1.

Indeed, consider the homogeneous linear system obtained from (5.8). We cancel the non-

rightmost coefficient of the i-th constraint using the rightmost coefficient of the (i− 2)-th.

Starting at i equal to 3 and proceeding successfully for all constraints i ≥ 3, we obtain the
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following equivalent homogeneous linear system:

d1 + d2 = 0,

d1 − d3 = 0,

−d1 − d4 = 0

d1 − d5 = 0,

−d1 − d6 = 0,

... . . . ...

(5.9)

The formal justification of (5.9) requires a transfinite induction but the idea is quite intu-

itive. The row-finite matrix H defined by (5.9) only violates the condition 2 on the HNF

definition. Indeed, the normalization of the right-most coefficient of each row is only to en-

sure uniqueness of the HNF decomposition up to permutations of the rows of zero length,

see [67] and [13].

Thus, any homogeneous solution d to (5.9) is parameterized by d1 ∈ R as d2k = −d1

and d2k+1 = d1, for all k ∈ N. In particular, we compute the AC-x∗ condition for any

homogeneous solution d:

sup
i∈N

|di|
x∗i

= max

{
sup
k∈N

|d1|
(2k + 1)/2k

, sup
k∈N

|d1|
1/2k

}
= max

{
|d1| , sup

k∈N
2k|d1|

}

=


0, if d1 = 0,

+∞, if d1 6= 0.

Because the only AC-x∗ solution to the homogeneous linear system (5.9) is the zero vector,

we conclude that x∗ is an extreme point of P , by Theorem 5.3.1.

5.4.2 The Gauss-Jordan elimination method for row-finite matrices

In this section, we present the Gauss-Jordan elimination method to find the HNF decompo-

sition of any row-finite matrix, as introduced by [13]. Any row-finite matrixA ∈ RFM(R)
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can be decomposed as H = QA, where H ∈ RFM(R) is in HNF and Q ∈ RFM(R) is

non-singular. We provide an alternative construction ofQ based on a sequence of matrices

with increasing order. Let RFMk(R) be the space of row-finite matrices with k rows.

Below we describe the Gauss-Jordan elimination method with rightmost pivoting rule:

1. Initialization: letH(0), Q(0) := ∅, and let k = 1.

2. For all k ≥ 1 do:

(a) Gaussian step. Consider the row-finite matrix
[
H(k−1)

ak

]
∈ RFMk(R). Using the

rightmost nonzero entry of the first k−1 rows, apply elementary row operations

to vanish the corresponding coordinates of ak. This operation is equivalent to a

left-multiplication by a non-singular lower triangular matrix G(k) ∈ Rk×k.

(b) Normalization step. After the Gaussian step, we have the row-finite matrix[
H(k−1)

gk

]
. If gk is a nonzero vector we normalize it by its rightmost nonzero co-

efficient. This operations is equivalent to a left-multiplication by a non-singular

diagonal matrix N (k) ∈ Rk×k.

(c) Jordan step. After the normalization step, we obtain the row-finite matrix[
H(k−1)

hk

]
, where the rightmost coefficient hk,l(hk) is 1 if hk is a nonzero vec-

tor. We clear the elements above the k-th row at the l(hk)-th column. This

operation is equivalent to a left-multiplication by a non-singular upper triangu-

lar matrix J (k) ∈ Rk×k.

(d) Permutation step. After the Jordan step, we obtain a row-finite matrix
[
H̃(k−1)

hk

]
that is almost in HNF. We order the nonzero rows to an increasing order of

length and do not change the position of the zero rows. This operation is equiva-

lent to a left-multiplication by a permutation matrix P (k) ∈ Rk×k. The resulting

row-finite matrix is denoted byH(k) and it is HNF.

(e) Update the matrix Q(k). Denote by Ek the elementary matrix obtained by the

steps from (a)-(d), that is, Ek := P (k)J (k)N (k)G(k). Define Q(k) ∈ Rk×k using
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the recursive formula below:

Q(k) := Ek

Q(k−1)

1

 . (5.10)

The matrices G(k) and J (k) for the Gaussian and Jordan steps, respectively, have a simple

form:

G(k) :=



1

1

. . .

1

ck,1 ck,2 · · · ck,k−1 1


, J (k) :=



1 d1,k

1 d2,k

. . . ...

1 dk−1,k

1


.

Therefore, the Gauss-Jordan elimination method can be easily implemented for row-finite

matrices A with a finite number of rows.

Denote by H|n the row-finite matrix in RFMn(R) obtained from the first n rows of H ∈

RFMk(R). Similarly, denote by Q|n ∈ Rn×k the matrix obtained from the first n rows

of Q ∈ Rk×k. Below, we have a stabilization result for the Gauss-Jordan Elimination

method regarding row-finite matrices A ∈ RFM(R) with countable number of rows.

Theorem 5.4.1 (Chain of row-finite matrices). Let A ∈ RFM(R). Consider the sequence

of matrices and row-finite matrices generated by the Gauss-Jordan algorithm. Given n ≥

1, there exists σn ≥ n such that

H(k)
∣∣
n

= H(σn)
∣∣
n
, Q(k)

∣∣
n

=
[
Q(σn)

∣∣
n

0
]
,

for every k ≥ σn, where 0 ∈ Rn×(k−σn) is a zero matrix. In other words, given n ∈ N, the

first n rows of H(k) and Q(k) stabilizes after a finite number of iterations σn ∈ N, where

σn ≥ n.
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Proof. First, the length of any fixed row of H(k)|n is a non-increasing function of k ≥ n.

Indeed, the Gaussian step and the normalization step do not change the rows of H(k)
∣∣
n

after the n-th iteration, and the Jordan step can only decrease the length of those rows. The

permutation step only swaps a row by another one of shorter length. Hence, the length of

any fixed row ofH(k)|n is a non-increasing function of k ≥ n.

This implies that the Gauss-Jordan elimination method does not swap the rows of H(k)|n

after a finite number of iterations σn ≥ n. In particular, the Jordan step at any iteration k ≥

σn does not change the rows of H(k)|n either, otherwise the length of hk at the Jordan step

would be strictly less than the length of some row of H(k)|n and the next permutation step

would swap some row ofH(k)|n by hk, at an iteration k ≥ σn.

For any iteration k ≥ σn, the elementary matrix Ek becomes the block matrix

Ek =

 In 0

Ck−n Dk−n

 , (5.11)

where In ∈ Rn×n is the identity matrix, 0 ∈ Rn×(k−n) is the zero matrix, Ck−n ∈ R(k−n)×n,

and Dk−n ∈ R(k−n)×(k−n). The recursive relation of Q(k) given by (5.10) and the block

expression of Ek in Equation (5.11) imply that Q(k)|n is equal to
[
Q(σn)

∣∣
n

0
]
, for any

iteration k ≥ σn.

An important consequence of Theorem 5.4.1 is the chain of row-finite matrices

H(σ1)
∣∣
1
v H(σ2)

∣∣
2
v · · · v H(σn)

∣∣
n
v · · · , (5.12)

where the relation H(σi)
∣∣
i
v H(σi+1)

∣∣
i+1

represents the equality H(σi)
∣∣
i

= H(σi+1)
∣∣
i
. It

follows from Theorem 5.4.1 that the row-finite matrix H ∈ RFM(R) with countable rows

and given by H|n := H(σn)
∣∣
n

, for all n ∈ N, is well defined and in HNF. The matrix

Q(k) ∈ Rk×k can be extended to a row-finite matrix with k rows, Q(k) ∈ RFMk(R),

by the natural immersion map. It also follows from Theorem 5.4.1 that the row-finite
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matrixQ ∈ RFM(R) defined asQ|n := Q(σn)
∣∣
n

is well defined. The next result establishes

the relation between A,H, and Q.

Theorem 5.4.2. The row-finite matrix Q is non-singular andH = QA.

Proof. The proof of Theorem 5.4.2 is referred to [67].

5.5 An application to extreme flow characterization for infinite digraphs

In this section, we provide an alternative proof for the characterization theorem of extreme

flows over infinite digraphs of finite node degrees. We revisit the result of [11] under

the scope of row-finite linear systems and the characterization of Theorem 5.3.1 regarding

basic feasible solutions.

Let G = (N ,A) be a directed graph where the number of nodes N is countable and the

number of arcs connected to each node is finite. The set of arcsA is also countable since it

is a countable union of finite sets. Below, we recall some definitions for digraphs:

• We say that the digraph G is weakly connected if one replaces its arcs by undirected

edges and the resulting graph is connected. See Figures 5.1a and 5.1b for an example

of a weakly connected digraph.

• We say that C is a weak cycle of G if C is a cycle for the induced undirected graph.

See Figure 5.1a for an example. We call a digraph G acyclic if it has no weak cycle.

• A tree T is a digraph that is weakly connected and has no weak cycle. See Figure 5.1b

for an example of a tree.

• Let U be a subset of N . We define the cut-set of outgoing, incoming, and crossing
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arcs as

δ+(U) = {a ∈ A | a = (i, j), i ∈ U, j ∈ N\U}, (5.13)

δ−(U) = {a ∈ A | a = (j, i), i ∈ U, j ∈ N\U}, (5.14)

δ(U) = δ+(U) ∪ δ−(U), (5.15)

respectively. We abuse notation and denote by δ+(i), δ−(i), and δ(i) the cut-set of

outgoing, incoming, and crossing arcs for the singleton {i}, respectively. We only

consider digraphs G of finite degree, that is, the cardinality of δ(i) is finite, for every

node i ∈ N .

• We call the network flow set associated to the digraph G the convex set below:

P =

x ∈ RA

∣∣∣∣∣∣∣
∑

a∈δ+(i) x(a)−
∑

δ−(i) x(a) = d(i), ∀i ∈ N ,

b(a) ≤ x(a) ≤ b(a), ∀a ∈ A.

 , (5.16)

where d : N → R is the node demand function, and b, b : A → R are arc bound

functions. The constraints that define P in (5.16) form a row-finite linear system.

• Given a flow x ∈ P , we call the residual capacity at an arc a ∈ A the quantity

r(a) = min{x(a)− b(a), b(a)− x(a)}. (5.17)

It represents the maximum amount by which one can perturb the flow x at a while

preserving the arc bounds b(a) ≤ x(a) ≤ b(a). The function r in (5.17) is called the

residual function induced by the network flow x ∈ P . A general residual function is

any non-negative function with domain A.

• We denote by A(x) the set of arcs a ∈ A with positive residual capacity, i.e., r(a) >

0. We call residual graph G(x) the digraph induced by the arc subset A(x).
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• We call the max-residual flow with source node i ∈ N the quantity

R(i, G) = sup
h,u

h (5.18a)

s. t.
∑

a∈δ+(k)

u(a)−
∑

a∈δ−(k)

u(a) = h · εik, ∀k ∈ N , (5.18b)

−r(a) ≤ u(a) ≤ r(a), ∀a ∈ A, (5.18c)

u ∈ RA, h ∈ R, (5.18d)

where εik represents the Kronecker function, that is, εik = 1 if i equals k, and εik = 0

otherwise. Intuitively, R(i, G) is the maximum amount by which one can perturb the

node demand at i and expect the existence of a feasible flow.

• We call the min-residual cut with source node i ∈ N the quantity

C(i, G) = inf
U⊆N ;

i∈U, |U |<∞

∑
a∈δ(U)

r(a). (5.19)

It represents the residual bottleneck capacity at i ∈ N and can be interpreted simi-

larly to the max-residual flow, see Lemma 5.5.2.

We now illustrate some important ideas regarding extreme flows over infinite digraphs of

finite node degrees. Let G be an infinite digraph where the set of nodes is Z and it satisfies

the finite degree property. Let the flow lower bound b(a) be 0 and the flow upper bound b(a)

be 2, for every arc a ∈ A. Let the demand d(i) be 0, for every node i ∈ Z.

We recall from basic network flow theory that if the residual graph G(x) associated to a

flow x ∈ P has a weak cycle then x is not extreme. In Figure 5.1a, we illustrate a weak

cycle in a residual graphG(x), where the numbers in each arc represent the associated flow.

When this happens, one can create two solutions by slightly increasing the total flow along

the cycle in the clockwise and anti-clockwise directions. This crease two flows x1, x2 ∈ P

such that (x1 + x2)/2 = x, which implies that x is not an extreme flow.
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However, a new phenomenon occurs for infinite digraphs: even if the residual graph G(x)

is acyclic, the flow x may not be extreme. Consider the residual graph in Figure 5.1b.

One can create different solutions by increasing the total flow to the “left” or to the “right”

of G(x), then proving that x is a convex combination of two solutions. The extreme flow

characterization theorem states the exact conditions for x to be an extreme point.
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(a) Weak cycle in a residual
graph G(x).
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(b) Tree in a residual graph G(x).

Figure 5.1: Non-extreme flows in infinite digraphs with finite degree.

To understand the intuition of the second condition of the extreme point characterization,

one needs an interpretation of the max-residual flow. Indeed, the max-residual flowR(i, G)

with source node i ∈ N is a less conventional type of max-flow problem since it does not

consider a sink node. The quantity R(i, G) represents the maximum additional flow one

can inject or withdraw at i ∈ N and re-route it to or from “infinity”. If G is a finite graph,

then the quantityR(i, G) is 0 since there is no sink node. One can also observe this property

from the conservation equation (5.18b):

h =
∑
k∈N

 ∑
a∈δ+(k)

u(a)−
∑
δ−(k)

u(a)

 = 0.

Besides no weak cycle in the residual graphG(x), the other necessary condition is that there

are no two arc-disjoint trees T, S in the residual graphG(x) with positive max-residual flow

R(i, T ), R(i, S) > 0 at some common node i ∈ NT ∩ NS . Those two conditions together

are necessary and sufficient for a flow x to be an extreme point.
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In order to prove this characterization, we need a lemma that guarantees the existence of a

feasible solution to the row-finite linear system defined by the constraints of (5.18). In fact,

such lemma is the the generalization of the max-flow min cut for a residual tree.

Indeed, let T = (N ,A) be a tree with countable number of nodes and the finite degree

property, and let i ∈ N be the root node of T . Let Ta be the subtree defined by the

descendants of i in T after the arc a, and let Ta\{i} be the subtree Ta without the node i.

Clearly, the tree T is the union of arc-disjoint subtrees Ta, for all a ∈ δ(i). The following

lemma allows us to recursively create local solutions at arcs incident to each node j ∈ N ,

and patch them together to form a feasible solution to the max-residual system (5.18).

Lemma 5.5.1 (Recursive local balance for residual escape tree). Let T = (N ,A) be a tree

with countable number of nodes and the finite degree property. Let r be a residual function

at T and let i ∈ N be a node. If |h| ≤ C(i, T ) then the linear system

∑
a∈δ+(i)

u(a)−
∑

a∈δ−(i)

u(a) = h, (5.20a)

−r(a) ≤ u(a) ≤ r(a), ∀a ∈ δ(i), (5.20b)

has a solution u ∈ Rδ(i) such that |u(a)| ≤ C(ja, Ta\{i}), for every arc a ∈ δ(i), where ja

is the endpoint of the arc a different than i.

Proof. It follows from the arc-disjoint decomposition of T as union of Ta’s and the min-

residual cut definition (5.19) that

C(i, T ) =
∑
a∈δ(i)

C(i, Ta). (5.21)

Because the node i in Ta has only the arc a incident to it, we can represent the min-residual

cut C(i, Ta) as the minimum between the residual capacity r(a) and the min-residual
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cut C(ja, Ta\{i}) for the tree Ta\{i} at source node ja:

C(i, Ta) = min
{
r(a), C(ja, Ta\{i})

}
. (5.22)

We conclude the result by finding a solution u ∈ Rδ(i) to the node balance equation (5.20a)

such that |u(a)| ≤ C(i, Ta), for every a ∈ δ(i). Indeed, if such solutions exists then it

follows from (5.22) that u satisfies the arc bound (5.20b) and the desired condition |u(a)| ≤

C(ja, Ta\{i}), for every arc a ∈ δ(i).

Consider the continuous function Φ(u) :=
∑

a∈δ+(i) u(a)−
∑

a∈δ−(i) u(a) and let K be the

Cartesian product of intervals
∏

a∈δ(a)

[
− C(i, Ta), C(i, Ta)

]
. Note that K is a connected

and compact set, and the maximum of Φ over K has the form

max
u∈K

Φ(u) =
∑
a∈δ(i)

C(i, Ta) = C(i, T ).

We have a similar expression for the minimum of Φ over K, minu∈K Φ(u) = −C(i, T ).

This implies that the image of K by Φ is the interval
[
− C(i, T ), C(i, T )

]
, which con-

tains h, by hypothesis. Hence, there is a solution u ∈ Rδ(a) to the node balance equa-

tion (5.20a) such that |u(a)| ≤ C(i, Ta), for every a ∈ δ(i).

Lemma 5.5.2 (Max-flow min-cut for residual escape tree). Let T = (N ,A) be a tree with

countable number of nodes and the finite degree property. Let r be a residual function at T

and let i ∈ N be a node. Then, the max-residual system with source node i ∈ N ,

∑
a∈δ+(k)

u(a)−
∑

a∈δ−(k)

u(a) = h · εik, ∀k ∈ N , (5.23a)

−r(a) ≤ u(a) ≤ r(a), ∀a ∈ A, (5.23b)

has a feasible solution if, and only if, |h| ≤ C(i, T ). In particular, the max-residual

flow R(i, T ) is equal to the min-residual cut C(i, T ), i.e., R(i, T ) = C(i, T ).
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Proof. Suppose the linear system (5.23) has a feasible solution u ∈ R|A|. Given any sub-

set U ⊆ N such that |U | <∞ and i ∈ U , we have that

h =
∑
k∈U

 ∑
a∈δ+(k)

u(a)−
∑

a∈δ−(k)

u(a)


=

∑
a∈δ+(U)

u(a)−
∑

a∈δ−(U)

u(a),

where the second equality comes from the fact that u(a) cancels out in the expression inside

the parenthesis if a is an arc that that has both endpoint in U . We then conclude that

|h| ≤
∑

a∈δ+(U)

|u(a)|+
∑

a∈δ−(U)

|u(a)|

≤
∑

a∈δ+(U)

r(a) +
∑

a∈δ−(U)

r(a) =
∑
a∈δ(U)

r(a).

Hence, the inequality |h| ≤ C(i, T ) holds.

Conversely, suppose that |h| ≤ C(i, T ). Starting from the root node i, it follows from

Lemma 5.5.1 that we can inductively find local solutions u ∈ Rδ(j) at arcs incident to a

node j ∈ N , use those solutions as input h = u(a) for the linear system (5.20) at the

adjacent nodes, and repeat the argument. This sequence of local solutions forms a global

solution u ∈ RA to (5.23).

Now that we proved Lemma 5.5.2 about the max-flow min-cut for residual infinite tree, we

prove the extreme flow characterization theorem.

Theorem 5.5.1 (Extreme flows characterization, [11]). Let G = (N ,A) be a digraph and

let x ∈ P be a network flow at G. Let r be the residual function induced by x. Then, x is

an extreme point of P if, and only if, the residual graph G(x):

1. has no weak cycle; and
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2. has no arc-disjoint subtrees T and S with positive max-residual flow at a common

node, that is, R(i, T ), R(i, S) > 0, for some i ∈ NT ∩NS .

Proof. Suppose that x ∈ P is an extreme point. From Theorem 5.3.1, this is equivalent to

say that the following row-finite system have only the zero vector as an AC-x solution:

∑
a∈δ+(k)

u(a)−
∑

a∈δ−(k)

u(a) = 0, ∀k ∈ N , (5.24a)

u(a) = 0, ∀a ∈ A; r(a) = 0. (5.24b)

Suppose the residual graph G(x) has a cycle L := i1i2 · · · ini1. We say that an arc a of L

is oriented clockwise if a = (it, it+1) or a = (in, i1), and it is oriented anti-clockwise if

a = (it+1, it) or a = (i1, in), for some t = 1, . . . , n− 1. Let u ∈ RA be defined as

u(a) =


1, if a belongs to L and it is oriented clockwise,

−1, if a belongs to L and it is oriented anti-clockwise,

0, if a does not belong to L.

(5.25)

This is clearly a non-zero AC-x solution to (5.24). Hence, the condition 1 must hold.

Suppose the residual graph G(x) has two arc-disjoint subtrees T and S with positive max-

residual flow R(i, T ) and R(i, S), for some common node i ∈ NT ∩ NS . Let h be the

minimum value between R(i, T ) and R(i, S). It follows from Lemma 5.5.2 that if we

consider the input h and −h for the linear system (5.23) regarding the trees T and S,

respectively, then there exist non-zero solutions uT ∈ RAT and uS ∈ RAS associated

to each linear system. Since T and S are arc-disjoint subtrees of G(x), the following
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solution u ∈ RA is well-defined:

u(a) =


uT (a), if a ∈ AT ,

uS(a), if a ∈ AS ,

0, if a ∈ A\
(
AT ∪ AT

)
.

(5.26)

By construction, u is a non-zero solution to (5.24). Also, note that u is an AC-x vector:

sup
a∈A; r(a)>0

|u(a)|
r(a)

= sup
a∈AT∪AS

|u(a)|
r(a)

≤ 1, (5.27)

where the last inequality comes from the arc bounds (5.23b). Hence, condition 2 must hold.

Conversely, suppose conditions 1 and 2 hold. Suppose that u ∈ RA is a non-zero AC-x

solution to (5.24). Then, it follows from the node conversevation equation (5.24a) that there

is a maximal subtree W of G(x) such that

• u(a) is non-zero for every arc a ∈ AW .

• W has a countable number of nodes and the degree of every node is at least 2.

Let i ∈ NW be any node of W . We decompose W into two arc-disjoint subtrees T and S

with a common node i. If we normalize u by c := supa∈AW ;r(a)>0
|u(a)|
r(a)

then u|T and u|S are

two feasible solutions to the max-residual flow problem (5.23). Hence, R(i, T ), R(i, S) >

0, which is a contradiction. Hence, the only AC-x solution to (5.24) is the zero vector.

Therefore, x is an extreme point.
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CHAPTER 6

THESIS SUMMARY

6.1 The OPCF-EBF model

In Chapter 2, we proposed the Optimal Planning of Charging Facilities and Electric Bus

Fleets (OPCF-EBF) for the optimal transition to entirely electric fleets regarding the prac-

tical needs of public transit agencies. As described in Section 2.4, our model considers a

yearly planning horizon for charging infrastructure and fleet renewal investment with bus

retirement targets, charging location, and budget constraints.

Section 2.4 also described a realistic operation model to assess the fleet operation and

costs each year. We used the bus schedules informed through the General Transit Feed

Specification (GTFS) file regarding each public transit system to extract information about

the routes and associated bus demand for each hourly time interval. Our operation meets

the bus demand using a mix of electric and conventional bus fleets along the transition.

The operation model also offered insights into our model’s operation peaks and charging

dynamics. It represents a stationary bus schedule for a regular weekday, e.g., Monday. We

assumed a 24-hour operation is periodic and repeats throughout the year with the coupling

constraints between the variables of the last and first 24 hours.

We proved in Section 2.5 that the computational complexity of our OPCF-EBF model is

NP-Hard, and its proof is a polynomial-time reduction from the Uncapacitated Facility Lo-

cation (UFL) problem. In practice, the OPCF-EBF proved to be a numerically challenging

problem, as observed in Section 2.7. Even Gurobi could not find a solution with an average

gap smaller than 52% within 4 hours of computation in a cluster with 86 cores. We pro-

posed a scalable primal heuristic in Section 2.6 that accelerated the search for an excellent

primal solution, outperforming Gurobi in most real cases.
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We concluded Section 2.7 with insights about strategies and comments for electrifying the

city of Atlanta and Boston. We also observed fleet-sizing and operation patterns in the

analysis of 11 other US cities and 2 non-US cities.

6.2 Analysis of a single route fleet sizing model

In Chapter 3, we investigated whether the scheduling of the bus charging, operation, and

fleet sizing without charging location could be another cause for numerical issues. We ana-

lyzed in Section 3.3 the simplest fleet sizing and operation model, which assumes only one

route, unlimited charging capacity, and depot BEBs. In terms of operation, the depot BEBs

could only charge when depleted. Once fully recharged, they had to resume operation im-

mediately. We proved that the fleet sizing model is polynomially solvable, but the proof of

such a fact is nontrivial. Indeed, we reformulated in Section 3.3 our problem as a two-stage

model, in which the first stage contains only the fleet-sizing variables and constraints. In

contrast, the second stage is the operation, given the fleet size. We proved in Section 3.3.1

that the second stage problem is integral, i.e., the linear relaxation is the convex hull of the

feasible integral set, despite the second stage problem’s constraint matrix not being totally

unimodular.

In Section 3.3.2, we framed our two-stage integer program as a Separable Convex Integral

Program (SCIP). The novelty of our polynomial-time reduction lies in using a proximity

theorem [5] for SCIPs to limit the search for an optimal integral solution. This analysis only

works for instances where we do not allow either idle buses or early bus charging. For more

flexible operations, the computational complexity remains open. Then, in Section 3.4, we

generalized our model to a class of two-stage Separable Integral Programs. In Section 3.4.1,

we introduced the Dyadic Contiguous Row (DCR) matrix that generalized the notion of a

row circular matrix [6] which contains our second-stage constraint matrix as a particular

case. Our polynomial-time algorithm is based on the proximity theorem for SCIPs and can

also solve this new class of mixed-integer programs.
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6.3 Some properties of stationary infinite-dimensional linear programs

In Chapter 4, motivated by the stationary operation of our bus schedules, we investigated

the meaning of a stationary linear program more deeply. More precisely, we departed in

Section 4.4 from a fixed point value function perspective and introduced the elements of a

stationary infinite-dimensional linear program. The first challenge was to guarantee con-

vergence of the discounted series that naturally arises in the objective function. One could

take several approaches to make the objective well-defined, such as taking the series’s lim-

inf [7] or assuming a uniform bound for the decision variables [8, 9]. Indeed, we chose

a balance between those two. We introduced the `∞ set constraint in defining a station-

ary infinite-dimensional linear program. Our approach preserves the objective’s linearity

property and is less restrictive than the uniform bounds on the variable space.

Following this analogy and still in Section 4.4, we introduced a dual stationary infinite-

dimensional linear program. We applied the same duality rules as in a finite-dimensional

linear program and added the `1 set constraint. Weak Duality follows from simple algebraic

manipulations and Fubini’s theorem for absolutely convergent series.

In Section 4.5.1, we provided a toy problem inspired by a hydro-thermal power genera-

tion planning problem that supports our primal-dual setting and satisfies Strong Duality.

We observed in Section 4.5.2 through a counter-example that by dropping the `∞ and `1

set constraints Weak Duality may fail. However, once we enforced those set constraints,

the same example satisfies Strong Duality. Those pieces of evidence support the claim that

Strong Duality may hold for a large class of stationary infinite-dimensional linear programs.

Lastly, in Section 4.5.3, we connected our Hydro-Thermal power planning model with an

infinite-horizon Lot-Sizing program from [56] and observed some conjectures about pos-

sible generalizations to periodic problems instead of stationary infinite-dimensional linear

programs.
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6.4 An extension of basic feasible solutions to infinite-dimensional programs

Since we obtained explicit primal and dual optimal solutions for the stationary Hydro-

Thermal planning problem, the natural follow-up question we investigated in Chapter 5

was whether or not those solutions are extreme points. This motivated our algebraic char-

acterization of extreme points in Section 5.3 as a more direct criterion to check if a given

solution is extreme or not. We introduced the notion of an asymptotically compatible (AC)

vector, which connects with the idea of a feasible direction. Indeed, we proved that a di-

rection is AC with a feasible solution if, and only if, the direction and the opposite sign

direction are both feasible at the same point. The asymptotically compatible concept was

central to extend the notion of a basic feasible solution to any convex set defined by arbi-

trary linear constraints.

Using our extreme point characterization, we proved in Section 5.3.1 that the primal and

dual optimal solutions to the hydro-thermal planning problems are extreme points. We then

described in Section 5.4 a general method, called the Gauss-Jordan method, to find all the

solutions for binding linear equality systems called the row-finite linear systems. Finally,

we illustrated this technique in an extreme point example.

As a more general application, we provided in Section 5.5 an alternative proof of the ex-

treme point characterization for network flows on infinite graphs of finite degrees [11]. We

proved that a flow is extreme if, and only if, the residual graph has no weak cycle and there

are not two arc-disjoint trees with positive max-residual capacity at a common node. Intu-

itively, we cannot reroute flows from “infinity” from one tree into another. Our extension of

a basic feasible solution is a simplifying tool for the original extreme flow characterization

of [11].
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