Optimal Planning Of Charging Facilities For The Electrification Of Bus Fleets In Public Transit Systems

Filipe Goulart Cabral (ISyE-Gatech)

Joint work with professor Andy Sun (ISyE-GaTech)

October 25th, 2021 - INFORMS, Anaheim.

Introduction

The issue: global warming.

- Oral Carbon dioxide emission is the predominant cause of global warming.
- ② The average terrestrial temperature already increased by 1 Celsius degree.
- 3 An increase above 1.5 Celsius degrees can have a dire impact on society.

2/11

F. Cabral A. Sun EBF INFORMS'21

Introduction

The issue: global warming.

- Oral Carbon dioxide emission is the predominant cause of global warming.
- ② The average terrestrial temperature already increased by 1 Celsius degree.
- An increase above 1.5 Celsius degrees can have a dire impact on society.

Battery Electric Bus (BEB) is an attractive solution to public transp.

- 1 It produces zero tailpipe greenhouse gas emission.
- ② Its fuel cost is around 40% cheaper than a similar-sized bus.
- 3 Its noise level is lower, and it has fewer moving parts and maintenance needs.

Introduction

The issue: global warming.

- Carbon dioxide emission is the predominant cause of global warming.
- 2 The average terrestrial temperature already increased by 1 Celsius degree.
- 3 An increase above 1.5 Celsius degrees can have a dire impact on society.

Battery Electric Bus (BEB) is an attractive solution to public transp.

- 1 It produces zero tailpipe greenhouse gas emission.
- 2 Its fuel cost is around 40% cheaper than a similar-sized bus.
- 3 Its noise level is lower, and it has fewer moving parts and maintenance needs.

The challenge: the travel range and the fuel supply technology.

- 1 Infra-structure choice such as type of BEB, charger technology and location.
- 2 Efficient management of the bus schedule and charging times.

Case-study: MARTA

Bellow we have the bus demand and bus routes for the city of Atlanta.

Case-study: MARTA

Bellow we have the bus demand and bus routes for the city of Atlanta.

Data and parameters

Our data about bus schedules, routes and bus stops is obtained from the GTFS. The BEB parameters and cost are obtained from technical reports.

Problem formulation

$$F_{\theta}(\boldsymbol{x}^{\theta-1}, \boldsymbol{\chi}^{\theta-1}, \boldsymbol{y}^{\theta-1}, \boldsymbol{\eta}^{\theta-1}, \tilde{\boldsymbol{\eta}}^{\theta-1}, \boldsymbol{\lambda}^{\theta-1}) =$$

$$= \min \sum_{i \in I} f_i \cdot [x_i - x_i^{\theta-1}] + \sum_{r \in R} \tilde{f}_r \cdot [\chi_r - \chi_r^{\theta-1}] + \sum_{(i,k) \in I \times K} c_{ik} \cdot [y_{ik} - y_{ik}^{\theta-1}]$$

$$+ \sum_{b \in B_{depot}} c_{b,beb} \cdot [\eta_b - \eta_b^{\theta-1}] + \sum_{b \in B_{route}} \tilde{c}_{b,beb} \cdot [\tilde{\eta}_b - \tilde{\eta}_b^{\theta-1}] + c_{cnv} \cdot [\lambda - \lambda^{\theta-1}]$$

$$+ G_{\theta}(\boldsymbol{x}, \boldsymbol{\chi}, \boldsymbol{y}, \boldsymbol{\eta}, \tilde{\boldsymbol{\eta}}, \boldsymbol{\lambda}) + \gamma \cdot F_{\theta+1}(\boldsymbol{x}, \boldsymbol{\chi}, \boldsymbol{y}, \boldsymbol{\eta}, \tilde{\boldsymbol{\eta}}, \boldsymbol{\lambda})$$

$$\text{s.t.} \quad \underline{Q}_{ik} \cdot x_i \leqslant y_{ik} \leqslant \overline{Q}_{ik} \cdot x_i, \quad \forall i \in I, \ k \in K, \tag{1}$$

$$0 \leqslant \chi_r \leqslant CP_r, \quad \forall r \in R, \tag{2}$$

$$\boldsymbol{x} \in \{0,1\}^{|I|}, \quad (\boldsymbol{\chi}, \boldsymbol{y}, \boldsymbol{\eta}, \widetilde{\boldsymbol{\eta}}, \boldsymbol{\lambda}) \in \mathbb{Z}_{+}^{M}.$$
 (5)

F. Cabral A. Sun

Problem formulation

$$F_{\theta}(\boldsymbol{x}^{\theta-1}, \boldsymbol{\chi}^{\theta-1}, \boldsymbol{y}^{\theta-1}, \boldsymbol{\eta}^{\theta-1}, \tilde{\boldsymbol{\eta}}^{\theta-1}, \boldsymbol{\lambda}^{\theta-1}) =$$

$$= \min \sum_{i \in I} f_i \cdot [x_i - x_i^{\theta-1}] + \sum_{r \in R} \tilde{f}_r \cdot [\chi_r - \chi_r^{\theta-1}] + \sum_{(i,k) \in I \times K} c_{ik} \cdot [y_{ik} - y_{ik}^{\theta-1}]$$

$$+ \sum_{b \in B_{depot}} c_{b,beb} \cdot [\eta_b - \eta_b^{\theta-1}] + \sum_{b \in B_{route}} \tilde{c}_{b,beb} \cdot [\tilde{\eta}_b - \tilde{\eta}_b^{\theta-1}] + c_{cnv} \cdot [\lambda - \lambda^{\theta-1}]$$

$$+ G_{\theta}(\boldsymbol{x}, \boldsymbol{\chi}, \boldsymbol{y}, \boldsymbol{\eta}, \tilde{\boldsymbol{\eta}}, \boldsymbol{\lambda}) + \gamma \cdot F_{\theta+1}(\boldsymbol{x}, \boldsymbol{\chi}, \boldsymbol{y}, \boldsymbol{\eta}, \tilde{\boldsymbol{\eta}}, \boldsymbol{\lambda})$$

$$\text{s.t.} \quad \underline{Q}_{ik} \cdot x_i \leqslant y_{ik} \leqslant \overline{Q}_{ik} \cdot x_i, \quad \forall i \in I, \ k \in K, \tag{1}$$

$$0 \leqslant \chi_r \leqslant CP_r, \quad \forall r \in R, \tag{2}$$

$$\boldsymbol{x} \in \{0,1\}^{|I|}, \quad (\boldsymbol{\chi}, \boldsymbol{y}, \boldsymbol{\eta}, \widetilde{\boldsymbol{\eta}}, \boldsymbol{\lambda}) \in \mathbb{Z}_{+}^{M}.$$
 (5)

(4)

4 / 11

Theorem: The Electrical Bus Fleet (EBF) problem is NP-hard

The Uncapacitated Facility Location problem can be polynomially reduced to the EBF problem.

F. Cabral A. Sun INFORMS'21

Problem formulation: the operational part

(Policy constraints)

(16)

Problem formulation: the operational part

$$G_{\theta}(\boldsymbol{x}, \boldsymbol{\chi}, \boldsymbol{y}, \boldsymbol{\eta}, \tilde{\boldsymbol{\eta}}, \boldsymbol{\lambda}) = \min$$
 (charging costs) + (bus operating costs) + (penalties) (6)

s.t. (Bus demand constraint) (7)
 (Depot charging capacity) (8)
 (On-route charging capacity) (9)
 (Number of Depot BEB) (10)
 (Number of On-route BEB) (11)
 (Number of Conventional buses) (12)
 (Depot state transition eq.) (13)
 (On-route state transition eq.) (14)
 (Conventional buses state transition eq.) (15)
 (Policy constraints)

Single-period instance.

Computational time is 10 minutes with an optimality gap of 2.67%.

General features

Depot dynamics

On-route dynamics

Multi-periodic case

(a) Investment period 1.

(b) Investment period 3.

Greedy heuristic

Result for 6 investment periods:

	Opt. gap (%)	time (min)
Atlanta	6.23	67
Detroit	7.11	25
LasVegas	9.83	29

Table: Greedy algorithm run time and optimality gap.

Thank you!

Questions?

F. Cabral A. Sun EBF INFORMS'21 11/11